dc.contributor.author |
Han, Jeong Soon |
|
dc.contributor.author |
Kim, Hee Sik |
|
dc.contributor.author |
Neggers, Joseph |
|
dc.date.accessioned |
2021-07-13T14:34:59Z |
|
dc.date.available |
2021-07-13T14:34:59Z |
|
dc.date.issued |
2012 |
|
dc.identifier.citation |
Han, J., Kim, H., Neggers, J. (2012): On Fibonacci Functions with Fibonacci Numbers. Advances in Difference Equations. Article Number 126. |
en_US |
dc.identifier.uri |
http://ir.ua.edu/handle/123456789/7977 |
|
dc.description.abstract |
In this paper we consider Fibonacci functions on the real numbers R, i.e., functions f : R → R such that for all x ∈ R, f(x + 2) = f(x + 1) + f(x). We develop the notion of Fibonacci functions using the concept of f-even and f-odd functions. Moreover, we show that if f is a Fibonacci function then limx→∞ f(x+1)/f(x) = 1+√5/2 . |
en_US |
dc.description.uri |
https://doi.org/10.1186/1687-1847-2012-126 |
|
dc.format.mimetype |
application/pdf |
|
dc.language |
English |
en_US |
dc.rights.uri |
https://creativecommons.org/licenses/by/2.0 |
|
dc.subject |
Fibonacci function |
en_US |
dc.subject |
f-even (f-odd) function |
en_US |
dc.subject |
Golden ratio |
en_US |
dc.title |
On Fibonacci Functions with Fibonacci Numbers |
en_US |
dc.type |
text |
|