On Fibonacci Functions with Fibonacci Numbers

Show simple item record

dc.contributor.author Han, Jeong Soon
dc.contributor.author Kim, Hee Sik
dc.contributor.author Neggers, Joseph
dc.date.accessioned 2021-07-13T14:34:59Z
dc.date.available 2021-07-13T14:34:59Z
dc.date.issued 2012
dc.identifier.citation Han, J., Kim, H., Neggers, J. (2012): On Fibonacci Functions with Fibonacci Numbers. Advances in Difference Equations. Article Number 126. en_US
dc.identifier.uri http://ir.ua.edu/handle/123456789/7977
dc.description.abstract In this paper we consider Fibonacci functions on the real numbers R, i.e., functions f : R → R such that for all x ∈ R, f(x + 2) = f(x + 1) + f(x). We develop the notion of Fibonacci functions using the concept of f-even and f-odd functions. Moreover, we show that if f is a Fibonacci function then limx→∞ f(x+1)/f(x) = 1+√5/2 . en_US
dc.description.uri https://doi.org/10.1186/1687-1847-2012-126
dc.format.mimetype application/pdf
dc.language English en_US
dc.rights.uri https://creativecommons.org/licenses/by/2.0
dc.subject Fibonacci function en_US
dc.subject f-even (f-odd) function en_US
dc.subject Golden ratio en_US
dc.title On Fibonacci Functions with Fibonacci Numbers en_US
dc.type text


Files in this item

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/2.0 Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/2.0

Search DSpace


Browse

My Account