Flame diagnostics of swirl stabilized combustion without and with porous inert media for passive mitigation of thermoacoustic instabilities

Show simple item record

dc.contributor Fisher, Brian T.
dc.contributor Midkiff, K. Clark
dc.contributor Williams, Keith A.
dc.contributor Bara, J. E.
dc.contributor.advisor Agrawal, Ajay K.
dc.contributor.author Allen, James
dc.date.accessioned 2018-12-14T18:11:55Z
dc.date.available 2018-12-14T18:11:55Z
dc.date.issued 2018
dc.identifier.other u0015_0000001_0003094
dc.identifier.other Allen_alatus_0004D_13610
dc.identifier.uri http://ir.ua.edu/handle/123456789/5226
dc.description Electronic Thesis or Dissertation
dc.description.abstract Implementing the combustion strategy of lean premixed (LPM), gas turbines can significantly reduce regulated emissions from the combustion process but are susceptible to thermoacoustic instabilities. With the use of time-resolved PLIF and dynamic pressure transducers, the coupling between the flame structure and pressure was used to characterize the instability. Without the porous insert, the pressure measurements revealed a strong dominate frequency at 340 Hz, which was identical to the oscillation frequency of the OH intensity at different locations are indicating a global instability. The pressure and OH* signal oscillation are coupled with a consistent phase shift. With the addition of the porous insert, the pressure oscillation amplitude was reduced by an order of magnitude with minor peaks observed in the OH spectra indicating a reduction in the thermoacoustic instability while removing the phase relationship previously seen. To verify the importance of the porous structure, a comparison between a solid and porous insert, having identical geometries, was tested. Two regions were produced, one where the inserts have near identical performance, driven by insert geometry, and a second where the porous insert mitigates an instability seen with the solid insert demonstrating the requirement of the porous structure. To verify the ability of a single porous design to be effective over a wide operating range, different thermoacoustic instability modes are produced by adjusting equivalence ratio. For multiple conditions where the porous exhibited external flamelet stabilization the insert is effective at mitigating the thermoacoustic instability, but when the flamelets subside into the insert a thermoacoustic instability was seen. With the requirement of external stabilization meet, distinct instability modes were eliminated thus giving evidence a single porous insert design mitigates thermoacoustic instabilities across a range of inlet conditions. Finally a potential relationship between expansion ratio and total SPL is investigated for a lean direct injection (LDI) system. With a combustor diameter of 50 mm, the LDI system demonstrates cyclic flame structures indicating its susceptibility of thermoacoustic instability. Further the dominating frequencies observed in dynamic pressure and OH* signal are identical signifying a coupling between the flame intensity and pressure oscillations.
dc.format.extent 156 p.
dc.format.medium electronic
dc.format.mimetype application/pdf
dc.language English
dc.language.iso en_US
dc.publisher University of Alabama Libraries
dc.relation.ispartof The University of Alabama Electronic Theses and Dissertations
dc.relation.ispartof The University of Alabama Libraries Digital Collections
dc.relation.hasversion born digital
dc.rights All rights reserved by the author unless otherwise indicated.
dc.subject.other Mechanical engineering
dc.title Flame diagnostics of swirl stabilized combustion without and with porous inert media for passive mitigation of thermoacoustic instabilities
dc.type thesis
dc.type text
etdms.degree.department University of Alabama. Department of Mechanical Engineering
etdms.degree.discipline Mechanical Engineering
etdms.degree.grantor The University of Alabama
etdms.degree.level doctoral
etdms.degree.name Ph.D.

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


My Account