Quantitative Research Methods in Chaos and Complexity: From Probability to Post Hoc Regression Analyses
dc.contributor.author | Gilstrap, Donald L. | |
dc.contributor.other | University of Alabama Tuscaloosa | |
dc.date.accessioned | 2018-11-20T15:47:20Z | |
dc.date.available | 2018-11-20T15:47:20Z | |
dc.date.issued | 2013 | |
dc.description.abstract | In addition to qualitative methods presented in chaos and complexity theories in educational research, this article addresses quantitative methods that may show potential for future research studies. Although much in the social and behavioral sciences literature has focused on computer simulations, this article explores current chaos and complexity methods that have the potential to bridge the divide between qualitative and quantitative, as well as theoretical and applied, human research studies. These methods include multiple linear regression, nonlinear regression, stochastics, Monte Carlo methods, Markov Chains, and Lyapunov exponents. A postulate for post hoc regression analysis is then presented as an example of an emergent, recursive, and iterative quantitative method when dealing with interaction effects and collinearity among variables. This postulate also highlights the power of both qualitative and quantitative chaos and complexity theories in order to observe and describe both the micro and macro levels of systemic emergence. | en_US |
dc.description.uri | https://journals.library.ualberta.ca/complicity/index.php/complicity/article/view/20400 | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Gilstrap, Donald L. (2013): Quantitative Research Methods in Chaos and Complexity: From Probability to Post Hoc Regression Analyses. Complicity: An International Journal of Complexity and Education, 10 (1/2). | |
dc.identifier.uri | http://ir.ua.edu/handle/123456789/4961 | |
dc.subject | complexity theory | |
dc.subject | chaos theory | |
dc.subject.lcsh | Education—Research | |
dc.title | Quantitative Research Methods in Chaos and Complexity: From Probability to Post Hoc Regression Analyses | en_US |
dc.type | text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- DGilstrap_Quantitative Research Methods in Chaos and Complexity- from probability to post hoc regression analyses_Library and Information Studies.pdf
- Size:
- 996.8 KB
- Format:
- Adobe Portable Document Format
- Description:
- main article
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.27 KB
- Format:
- Item-specific license agreed upon to submission
- Description: