An optimal approximation for the payoffs of variance swaps in static replication

Loading...
Thumbnail Image
Date
2014
Journal Title
Journal ISSN
Volume Title
Publisher
University of Alabama Libraries
Abstract

In this dissertation, we create a portfolio of simple vanilla put and call options as an optimal approximation of nonlinear payoffs by using static replication (1995, 1998) [1, 2] under certain measure which is called E(a,b,N,f). More specifically, we focus on the static replication of variance swaps payoffs because of their popularity in current financial market [3]. The analysis is motivated by the following reasons. Due to the limited availability of strike prices with traded vanilla options, static replication is only an approximation [1]. Bradie and Jain (2008) [4] used Black-Scholes and Heston stochastic volatility model to find the optimal approximation. Liu (2010) [5] created three approximation methods. In order to improve the approximation, we use a new measure for the static replication to construct the replicating portfolio with lower cost compared with the current methods.

Description
Electronic Thesis or Dissertation
Keywords
Mathematics, Finance
Citation