Synthesis and Analysis of Tensegrity Mechanisms
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Tensegrity systems combine antagonistic tensile and compressive members. The computational cost of synthesis and form-finding greatly increases with the complexity of a tensegrity structure. One solution, the use of modules which can be combined to create a more complex structure (tensegrity primitives), has been investigated using highly symmetric primitives of a few canonical types. This thesis determines the multistable region of an example planar tensegrity-adjacent mechanism, measures the feasibility of various parameters for shape control and demonstrates a method for stacking any number of such mechanisms, then develops a search method which exhaustively determines all possible tensegrities with a specified cable graph and with varying additional constraints. To demonstrate the viability of these methods, full catalogues of tensegrity primitives for a host of simple cable graphs are generated.