Application of Deep Learning to Estimate Mean River Cross-Sectional Depth

Thumbnail Image
Journal Title
Journal ISSN
Volume Title
University of Alabama Libraries

Estimates of riverine channel geometry play a vital role in the physical representation of stream networks in models used to predict flood and drought conditions, manage water resources, and increase our knowledge of fluvial conditions under a changing climate. A well established body of literature exists that explains the relationship between channel geometry parameters width, depth, and velocity to instantaneous river discharge using a log-log linear power-law regression. In this study, a state-of-the-art deep learning regression model is presented and compared against the power-law method to evaluate their abilities to estimate cross-sectional mean river depth. Results reveal three key findings, the neural network: (1) decreases RMSE by 22% verse a CONUS scale power-law equation, (2) reduces prediction variance across Strahler stream orders, and (3) generally outperforms regional power-law equations with an average decrease in RMSE of 8.7%. Lastly, a reach-level CONUS dataset of estimated mean river depth is delivered.

Electronic Thesis or Dissertation
Deep learning, Hydraulic Geometry, Hydrology, Neural Network