Non-equilibrium Field Dynamics of an Honest Holographic Superconductor


Most holographic models of superconducting systems neglect the effects of dynamical boundary gauge fields during the process of spontaneous symmetry-breaking. Usually a global symmetry gets broken. This yields a superfluid, which then is gauged “weakly” afterwards. In this work we build and probe the dynamics of a holographic model in which a local boundary symmetry is spontaneously broken instead. We compute two-point functions of dynamical non-Abelian gauge fields in the normal and in the broken phase, and find non-trivial gapless modes. Our AdS3 gravity dual realizes a p-wave superconductor in (1+1) dimensions. The ground state of this model also breaks (1 + 1)- dimensional parity spontaneously, while the Hamiltonian is parity-invariant. We discuss possible implications of our results for a wider class of holographic liquids.

Gauge-gravity correspondence, Holography and condensed matter physics (AdS/CMT), Field Theories in Lower Dimensions, Spontaneous Symmetry Breaking
Gao, X., Kaminski, M., Zeng, H., Zhang, H. (2012): Non-equilibrium Field Dynamics of an Honest Holographic Superconductor, Journal of High Energy Physics.