Study of thermoelectric generators and perovskite solar cells for renewable energy applications

Thumbnail Image
Journal Title
Journal ISSN
Volume Title
University of Alabama Libraries

This dissertation aims at explorations of two promising renewable energy devices: one is thermoelectric generators (TEGs) and the other is perovskite solar cells (PVSCs). The first half of this dissertation (Chapter 2 & 3) focuses on the simulation study of TEGs while the second half (Chapter 4 & 5) concentrates on the experimental study of PVSCs. Chapter 1 serves as an overall introduction of TEGs and PVSCs. Chapter 2 investigates simulation of segmented TEGs with various state-of-the-art thermoelectric (TE) materials between 300 K and 1000 K. The influence of thermal radiation, electrical and thermal contact effects have been studied. The results show that these effects, if well-regulated, do not prevent segmented TEGs from achieving high efficiency and output power density. In Chapter 3, segmented TEGs have been further modelled to find out the best cost-performance ratios. The results reveal that successful segmentation of TE materials can offer a cost-performance ratio of ~0.86 $ W-1, less than commercially desired cost-effectiveness of 1 $ W-1, while maintaining an efficiency of 17.8% and delivering a power density over 3 Watt cm-2. These results predict the commercial feasibility and competitiveness of segmented TEGs in the same dollar per watt metrics as other renewable energy devices. Chapter 4 presents a rapid layer-specific annealing on perovskite active layer enabled by ultraviolet (UV) light-emitting diode (LED) and efficiency close to 19% is achieved in a simple planar inverted structure. These results justify that if the UV dosage is well-managed, UV light is capable of annealing perovskite into high-quality film rather than simply damaging it. Moreover, the layer-specific photonic treatment allows accurately estimating the deposition energy required to form perovskite film at device quality level. Chapter 5 exhibits an effort towards scalable manufacturing of perovskite solar panels. Perovskite mini-modules have been demonstrated with blade-coating and rapid thermal processing (RTP) in ambient environment. Mini-modules with an active area over 2.7 cm2 exhibit a champion efficiency of 17.73%. These results pave the way for large-scale production of PVSCs through high-speed roll-to-roll printing. Chapter 6 summarizes the conclusions and proposes a possible future work.

Electronic Thesis or Dissertation
Materials science