Efficiency and Emissions Characteristics of an HCCl Engine Fueled by Primary Reference Fuels
dc.contributor.author | Yang, Ruinan | |
dc.contributor.author | Hariharan, Deivanayagam | |
dc.contributor.author | Zilg, Steven | |
dc.contributor.author | Mamalis, Sotirios | |
dc.contributor.author | Lawler, Benjamin | |
dc.contributor.other | State University of New York (SUNY) System | |
dc.contributor.other | State University of New York (SUNY) Stony Brook | |
dc.contributor.other | University of Alabama Tuscaloosa | |
dc.date.accessioned | 2022-01-27T19:03:32Z | |
dc.date.available | 2022-01-27T19:03:32Z | |
dc.date.issued | 2018 | |
dc.description.abstract | This article investigates the effects of various primary reference fuel (PRF) blends, compression ratios, and intake temperatures on the thermodynamics and performance of homogeneous charge compression ignition (HCCl) combustion in a Cooperative Fuels Research (CFR) engine. Combustion phasing was kept constant at a CA50 phasing of 5 degrees after top dead center (aTDC) and the equivalence ratio was kept constant at 0.3. Meanwhile, the compression ratio varied from 8:1 to 15:1 as the PRF blends ranged from pure n-heptane to nearly pure isooctane. The intake temperature was used to match CA50 phasing. In addition to the experimental results, a GT-Power model was constructed to simulate the experimental engine and the model was validated against the experimental data. The GT-Power model and simulation results were used to help analyze the energy flows and thermodynamic conditions tested in the experiment. The results indicate that an increase of compression ratio causes higher thermal efficiency and fuel conversion efficiency; however, at the same compression ratio, an increase in PRF number results in lower efficiency due to the required increase in intake temperature and the associated decrease in charge density. While the efficiency does increase with compression ratio, the results show that the effect of increased expansion work is partially offset by higher heat transfer losses and lower ratios of specific heats at higher compression ratios. The results indicate that the maximum pressure rise rate (MPRR) in HCCl significantly increases with compression ratio. Combustion efficiency shows a strong trend with peak temperature regardless of the PRF number or compression ratio, indicating that the CO-to-CO2 conversion is independent of the parent fuel chemistry in the case of the PRFs, whereas the unburned hydrocarbon emissions showed the opposite trend, depending mostly on the parent fuel's autoignition tendency. | en_US |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Yang, R., Hariharan, D., Zilg, S., Lawler, B. et al., "Efficiency and Emissions Characteristics of an HCCI Engine Fueled by Primary Reference Fuels," SAE Int. J. Engines 11(6):993-1006, 2018, https://doi.org/10.4271/2018-01-1255. | |
dc.identifier.doi | 10.4271/2018-01-1255 | |
dc.identifier.orcid | https://orcid.org/0000-0002-6494-4102 | |
dc.identifier.uri | http://ir.ua.edu/handle/123456789/8246 | |
dc.language | English | |
dc.language.iso | en_US | |
dc.publisher | SAE International | |
dc.subject | HCCl | |
dc.subject | Primary Reference Fuel | |
dc.subject | Efficiency | |
dc.subject | Emissions | |
dc.subject | CHARGE COMPRESSION IGNITION | |
dc.subject | TEMPERATURE COMBUSTION MODE | |
dc.subject | BIODIESEL FUELS | |
dc.subject | JATROPHA OIL | |
dc.subject | HEAT RELEASE | |
dc.subject | DIESEL | |
dc.subject | PERFORMANCE | |
dc.subject | BLENDS | |
dc.subject | RATIO | |
dc.subject | Transportation Science & Technology | |
dc.subject | Transportation | |
dc.title | Efficiency and Emissions Characteristics of an HCCl Engine Fueled by Primary Reference Fuels | en_US |
dc.type | text | |
dc.type | Article |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Efficiency and emissions characteristics of an HCCI engine fueled by primary reference fuels.pdf
- Size:
- 1.13 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.27 KB
- Format:
- Item-specific license agreed upon to submission
- Description: