In-situ observation of trapped carriers in organic metal halide perovskite films with ultra-fast temporal and ultra-high energetic resolutions

dc.contributor.authorKobbekaduwa, Kanishka
dc.contributor.authorShrestha, Shreetu
dc.contributor.authorAdhikari, Pan
dc.contributor.authorLiu, Exian
dc.contributor.authorColeman, Lawrence
dc.contributor.authorZhang, Jianbing
dc.contributor.authorShi, Ying
dc.contributor.authorZhou, Yuanyuan
dc.contributor.authorBekenstein, Yehonadav
dc.contributor.authorYan, Feng
dc.contributor.authorRao, Apparao M.
dc.contributor.authorTsai, Hsinhan
dc.contributor.authorBeard, Matthew C.
dc.contributor.authorNie, Wanyi
dc.contributor.authorGao, Jianbo
dc.contributor.otherClemson University
dc.contributor.otherUnited States Department of Energy (DOE)
dc.contributor.otherLos Alamos National Laboratory
dc.contributor.otherHuazhong University of Science & Technology
dc.contributor.otherJilin University
dc.contributor.otherHong Kong Baptist University
dc.contributor.otherTechnion Israel Institute of Technology
dc.contributor.otherUniversity of Alabama Tuscaloosa
dc.contributor.otherNational Renewable Energy Laboratory - USA
dc.date.accessioned2023-09-28T19:11:39Z
dc.date.available2023-09-28T19:11:39Z
dc.date.issued2021
dc.description.abstractWe in-situ observe the ultrafast dynamics of trapped carriers in organic methyl ammonium lead halide perovskite thin films by ultrafast photocurrent spectroscopy with a sub-25 picosecond time resolution. Upon ultrafast laser excitation, trapped carriers follow a phonon assisted tunneling mechanism and a hopping transport mechanism along ultra-shallow to shallow trap states ranging from 1.72-11.51 millielectronvolts and is demonstrated by time-dependent and independent activation energies. Using temperature as an energetic ruler, we map trap states with ultra-high energy resolution down to < 0.01 millielectronvolt. In addition to carrier mobility of similar to 4 cm(2)V(-1)s(-1) and lifetime of similar to 1 nanosecond, we validate the above transport mechanisms by highlighting trap state dynamics, including trapping rates, de-trapping rates and trap properties, such as trap density, trap levels, and capture-cross sections. In this work we establish a foundation for trap dynamics in high defect-tolerant perovskites with ultra-fast temporal and ultra-high energetic resolution.en_US
dc.format.mediumelectronic
dc.format.mimetypeapplication/pdf
dc.identifier.citationKobbekaduwa, K., Shrestha, S., Adhikari, P., Liu, E., Coleman, L., Zhang, J., Shi, Y., Zhou, Y., Bekenstein, Y., Yan, F., Rao, A. M., Tsai, H., Beard, M. C., Nie, W., & Gao, J. (2021). In-situ observation of trapped carriers in organic metal halide perovskite films with ultra-fast temporal and ultra-high energetic resolutions. In Nature Communications (Vol. 12, Issue 1). Springer Science and Business Media LLC. https://doi.org/10.1038/s41467-021-21946-2
dc.identifier.doi10.1038/s41467-021-21946-2
dc.identifier.orcidhttps://orcid.org/0000-0002-2515-6314
dc.identifier.orcidhttps://orcid.org/0000-0002-1492-1279
dc.identifier.orcidhttps://orcid.org/0000-0002-8364-4295
dc.identifier.orcidhttps://orcid.org/0000-0002-1031-7891
dc.identifier.orcidhttps://orcid.org/0000-0002-3414-741X
dc.identifier.orcidhttps://orcid.org/0000-0002-2711-1355
dc.identifier.orcidhttps://orcid.org/0000-0003-4368-0774
dc.identifier.urihttps://ir.ua.edu/handle/123456789/11017
dc.languageEnglish
dc.language.isoen_US
dc.publisherNature Portfolio
dc.rights.licenseAttribution 4.0 International (CC BY 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectLIGHT-EMITTING-DIODES
dc.subjectCHARGE-TRANSPORT
dc.subjectSOLAR-CELLS
dc.subjectDEEP LEVELS
dc.subjectRECOMBINATION
dc.subjectCONDUCTIVITY
dc.subjectDEGRADATION
dc.subjectMECHANISM
dc.subjectJUNCTIONS
dc.subjectDYNAMICS
dc.subjectMultidisciplinary Sciences
dc.titleIn-situ observation of trapped carriers in organic metal halide perovskite films with ultra-fast temporal and ultra-high energetic resolutionsen_US
dc.typeArticle
dc.typetext

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC7954808-41467_2021_Article_21946.pdf
Size:
1.91 MB
Format:
Adobe Portable Document Format