Magnetic heating of Fe3O4 nanoparticles and magnetic micelles for a magnetothermally-triggered drug delivery system for cancer therapy

Loading...
Thumbnail Image
Date
2012
Journal Title
Journal ISSN
Volume Title
Publisher
University of Alabama Libraries
Abstract

Magnetic nanoparticles, MNPs, combined with stimuli-responsive polymers show potential to enhance the efficacy of cancer therapy in multifunctional nanoscale drug delivery systems. This project investigates the use of iron oxide nanoparticles (magnetite) to generate heat, via an applied magnetic field, to stimulate drug release of doxorubicin from an RGD-peptide targeted thermo-sensitive poly (ethylene glycol)-b-poly (caprolactone) micelle. Fe_3 O_4; nanoparticles custom synthesized at UA show the ability to heat to temperatures adequate for melting a semi-crystalline poly (caprolactone) micelle core. Investigations into parameters effecting magnetic heating of Fe_3 O_4 included studying the effects of magnetic field strength, H, and frequency, f. The results showed magnetic heating of the MNPs could induce hyperthermic temperatures. Specific absorption rates (SAR) for the MNPs were in the range of previously reported magnetite SARs, and followed the relationship with magnetic field strength predicted by the Rosensweig equation. The internal energy change in magnetic micelles was larger than that observed for MNPs in hexane when heated by an AC magnetic field. Drug release studies using triamterene- and doxorubicin- loaded micelles show a temperature-dependent acceleration of drug release at temperatures above 42 °C, the melting point of poly (caprolactone), as well as the possibility of magnetic induction hyperthermia-activated release.

Description
Electronic Thesis or Dissertation
Keywords
Chemical engineering, Biomedical engineering
Citation