Investigation and rational design of the catalyst-support interface in redox catalysis by ceria

dc.contributorThompson, Gregory B.
dc.contributorWeaver, Mark L.
dc.contributorUddi, Mruthunjaya
dc.contributorNing, Haibin
dc.contributor.advisorWang, Ruigang
dc.contributor.authorLiu, Zhongqi
dc.contributor.otherUniversity of Alabama Tuscaloosa
dc.date.accessioned2020-09-30T17:24:50Z
dc.date.available2020-09-30T17:24:50Z
dc.date.issued2020
dc.descriptionElectronic Thesis or Dissertationen_US
dc.description.abstractInvestigating and controlling the catalyst-support interfacial interaction/structure and their effects on catalytic performance are crucial for optimizing the activity, selectivity, and durability of catalytic materials, as the heterogeneous catalytic reactions typically take place on the catalyst surface and/or at the interface between the catalyst and support. Ceria (CeO2), due to its remarkable redox activity, has been widely adopted as an active support material or promoter in a multitude of redox catalytic reactions and is the focus of this research. With the goal of bridging the predictable catalyst design-fundamental understanding of performance-practical application, we expect to develop uniform and well-defined CeO2 nanostructures as model supports to investigate the underlying mechanism of the catalyst-support interactions, and furthermore establish the correlation between interfacial structure and catalytically active sites. In Chapter 2, reducible CeO2 nanorods and nanocubes, as well as irreducible SiO2 nanospheres supported cobalt oxides (CoOx) catalysts were synthesized and comparatively studied to understand the effects of support morphology, surface defect, support reducibility, in addition to the CoOx-support interactions on their redox and catalytic properties. Chapter 3 focuses on exploring the role of “bimetallic catalysts-support interaction” over highly active CeO2 nanorods supported pure cobalt oxides and cobalt-based bimetallic oxides nanoparticles (Fe-Co, Ni-Co and Cu-Co). The interactions between cobalt with the second transition metals (Fe, Ni and Cu) are discussed as well. Nanoparticle agglomeration issue always exists when using wet-chemical methods to synthesize CeO2 nanomaterials, which is harmful for catalytic applications due to decreased surface area. Therefore, Chapter 4 presents a scalable and facile electrospinning process for designing novel fibrous structured CeO2 and one-pot synthesis of high-surface-area, thermally stable and low-temperature active Ru-CeO2 nanofiber catalysts. Besides, attracted by the great interest of three-dimensional (3D) nanoarray structures fabrication towards novel and high-performance catalyst design, as well as nanodevice applications, electrochemical deposition technique was adopted for fabricating CeO2 nanoarrays in Chapter 5. Processing factors on growing controllable CeO2 nanoarrays, including the current density, reaction temperature, stirring rate, anode and substrate types were comprehensively investigated. A scale-up synthetic strategy for CeO2 nanoarrays fabrication is developed. Besides, possible mechanisms for morphological evolution and growth of CeO2 nanoarrays are discussed.en_US
dc.format.extent196 p.
dc.format.mediumelectronic
dc.format.mimetypeapplication/pdf
dc.identifier.otheru0015_0000001_0003612
dc.identifier.otherLiu_alatus_0004D_14177
dc.identifier.urihttp://ir.ua.edu/handle/123456789/7011
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Alabama Libraries
dc.relation.hasversionborn digital
dc.relation.ispartofThe University of Alabama Electronic Theses and Dissertations
dc.relation.ispartofThe University of Alabama Libraries Digital Collections
dc.rightsAll rights reserved by the author unless otherwise indicated.en_US
dc.subjectMaterials science
dc.titleInvestigation and rational design of the catalyst-support interface in redox catalysis by ceriaen_US
dc.typethesis
dc.typetext
etdms.degree.departmentUniversity of Alabama. Department of Physics and Astronomy
etdms.degree.disciplineMaterials Science
etdms.degree.grantorThe University of Alabama
etdms.degree.leveldoctoral
etdms.degree.namePh.D.
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
file_1.pdf
Size:
7.34 MB
Format:
Adobe Portable Document Format