Design and synthesis of phosphine ligands for palladium-catalyzed coupling reactions

Thumbnail Image
Journal Title
Journal ISSN
Volume Title
University of Alabama Libraries

The synthesis and design of new phosphines is a continuing area of interest. In designing new phosphines there are a number of design features that need be considered. For palladium catalyzed coupling reactions, sterically demanding and electron releasing ligands are generally most effective in promoting the reaction. In evaluating the hydrophobic phosphines utilized in the Suzuki coupling, the neopentyl derivatives of TTBP (tri-tert-butylphosphine) were investigated. The effect of the addition of a neopentyl group increases the cone angle and impacts the electron donation by decreasing it relative to TTBP. The application in Suzuki coupling shows that a palladium catalyst with a neopentyl phosphine ligand demonstrates good to excellent yields with aryl bromides at room temperature. In the design of new phosphines, building in polar groups generates the ability to take advantage of using water as a solvent or co-solvent. The synthesis of the water soluble ligands DTBPPS (di-tert-butylphosphoniumpropane sulfonate) and DAPPS (di-adamantylphosphoniumpropane sulfonate) led to their testing in Sonogashira and Suzuki coupling reactions. Both ligands give catalysts that show good to excellent conversion of aryl bromides to products at room temperature. For aryl chlorides elevated temperatures are required. In expanding the water-soluble ligands into other palladium coupling reactions, DAPPS was developed in the carbonylation of aryl bromides. The palladium/DAPPS-catalyzed carbonylation coupling reactions show good to excellent conversion of aryl bromides to carbonylated products. This is the first example of a water-soluble alkylphosphine promoting carbonylation of an aryl bromide.

Electronic Thesis or Dissertation
Organic chemistry