Editorial: deep learning for 5G IoT systems
dc.contributor.author | Cheng, Xiaochun | |
dc.contributor.author | Zhang, Chengqi | |
dc.contributor.author | Qian, Yi | |
dc.contributor.author | Aloqaily, Moayad | |
dc.contributor.author | Xiao, Yang | |
dc.contributor.other | Middlesex University | |
dc.contributor.other | University of Technology Sydney | |
dc.contributor.other | University of Nebraska Lincoln | |
dc.contributor.other | Qatar University | |
dc.contributor.other | University of Alabama Tuscaloosa | |
dc.date.accessioned | 2023-09-28T19:31:09Z | |
dc.date.available | 2023-09-28T19:31:09Z | |
dc.date.issued | 2021 | |
dc.format.medium | electronic | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Cheng, X., Zhang, C., Qian, Y., Aloqaily, M., & Xiao, Y. (2021). Editorial: deep learning for 5G IoT systems. In International Journal of Machine Learning and Cybernetics (Vol. 12, Issue 11, pp. 3049–3051). Springer Science and Business Media LLC. https://doi.org/10.1007/s13042-021-01382-w | |
dc.identifier.doi | 10.1007/s13042-021-01382-w | |
dc.identifier.orcid | https://orcid.org/0000-0003-2443-7234 | |
dc.identifier.orcid | https://orcid.org/0000-0001-8549-6794 | |
dc.identifier.orcid | https://orcid.org/0000-0001-5715-7154 | |
dc.identifier.uri | https://ir.ua.edu/handle/123456789/11369 | |
dc.language | English | |
dc.language.iso | en_US | |
dc.publisher | Springer | |
dc.subject | Computer Science, Artificial Intelligence | |
dc.title | Editorial: deep learning for 5G IoT systems | en_US |
dc.type | Editorial Material | |
dc.type | text |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- PMC8287284-13042_2021_Article_1382.pdf
- Size:
- 293.6 KB
- Format:
- Adobe Portable Document Format