Groups whose non-permutable subgroups satisfy certain conditions

dc.contributorEvans, Martin J.
dc.contributorTrace, Bruce S.
dc.contributorCorson, Jon M.
dc.contributorBorie, Richard B.
dc.contributor.advisorDixon, Martyn R.
dc.contributor.authorKaratas, Zekeriya Yalcin
dc.contributor.otherUniversity of Alabama Tuscaloosa
dc.date.accessioned2017-03-01T16:34:35Z
dc.date.available2017-03-01T16:34:35Z
dc.date.issued2012
dc.descriptionElectronic Thesis or Dissertationen_US
dc.description.abstractIn this dissertation, we determine the structure of groups whose non-permutable subgroups satisfy certain conditions. In Chapter 1, we give the definitions and well-known results that we will use during the dissertation. In Chapter 2, we express our main result, which states that an infinite rank $mathfrak{X}$-group with all proper subgroups permutable or of finite rank has all subgroups permutable. Before proving our main result in Chapter 4, we establish some preliminary results in Chapter 3 which are used in proving the main result. In Final Chapter, we study the class of locally graded groups with all subgroups permutable or nilpotent of bounded class $c$. We prove that such groups are soluble of derived length bounded by a number depending on $c$. This chapter contains preliminary investigations into the problem of the structure of groups with all subgroups permutable or soluble.en_US
dc.format.extent50 p.
dc.format.mediumelectronic
dc.format.mimetypeapplication/pdf
dc.identifier.otheru0015_0000001_0001029
dc.identifier.otherKaratas_alatus_0004D_11111
dc.identifier.urihttps://ir.ua.edu/handle/123456789/1512
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Alabama Libraries
dc.relation.hasversionborn digital
dc.relation.ispartofThe University of Alabama Electronic Theses and Dissertations
dc.relation.ispartofThe University of Alabama Libraries Digital Collections
dc.rightsAll rights reserved by the author unless otherwise indicated.en_US
dc.subjectMathematics
dc.titleGroups whose non-permutable subgroups satisfy certain conditionsen_US
dc.typethesis
dc.typetext
etdms.degree.departmentUniversity of Alabama. Department of Mathematics
etdms.degree.disciplineMathematics
etdms.degree.grantorThe University of Alabama
etdms.degree.leveldoctoral
etdms.degree.namePh.D.
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
file_1.pdf
Size:
324.21 KB
Format:
Adobe Portable Document Format