Cardiovascular and themoregulatory responses to ice slurry ingestion during heat stress

dc.contributorRichardson, Mark T.
dc.contributorBishop, Phillip A.
dc.contributorNeggers, Yasmin H.
dc.contributorLeeper, James D.
dc.contributor.advisorWingo, Jonathan E.
dc.contributor.authorNg, Jason
dc.contributor.otherUniversity of Alabama Tuscaloosa
dc.date.accessioned2017-03-01T17:38:38Z
dc.date.available2017-03-01T17:38:38Z
dc.date.issued2015
dc.descriptionElectronic Thesis or Dissertationen_US
dc.description.abstractFluid ingestion has been reported to influence cardiovascular and thermoregulatory function, thereby affecting exercise performance. It remains unclear whether ice slurry ingestion during exercise results in similar effects. Three experiments examined thermal-, cardiovascular-, and exercise-related responses to ice slurry ingestion. In the first study, participants in firefighter protective clothing walked at ~7 METs in 35 °C while ingesting carbohydrate-electrolyte beverages as a tepid fluid, cold fluid, and ice slurry in a counterbalanced repeated measures study design. When ingested in large quantities and during uncompensable heat stress, ice slurry ingestion mitigated physiological strain by attenuating the rise in heart rate and rectal temperature. In a second study, cardiovascular drift (CV drift) was measured during 45 min of cycling at 60% maximal oxygen uptake (V̇O2max) in 35 °C, immediately followed by measurement of V̇O2max. Participants ingested fluid and ice slurry during two counterbalanced trials of exercise. CV drift was attenuated with ice slurry ingestion but V̇O2max was unaffected. In a third study, participants ingested ice slurry or cold fluid ad libitum while cycling at 50% maximal workload in 35 °C, immediately followed by a 15-min time trial during which participants completed as much work as possible. Compared to the fluid treatment, participants consumed half as much ice slurry, but total work completed during the time trial was not different. In conclusion, ice slurry ingestion blunts physiological strain during conditions in which evaporative heat loss is impaired, such as when wearing occlusive coverings. Furthermore, ice slurry ingestion attenuates the magnitude of CV drift during exercise in the heat, but this does not blunt the decrease in V̇O2max associated with exercise in hot conditions. Lastly, a smaller quantity of ice slurry is voluntarily ingested compared to cold fluid during prolonged submaximal exercise in the heat, but this does not differentially affect exercise performance.en_US
dc.format.extent98 p.
dc.format.mediumelectronic
dc.format.mimetypeapplication/pdf
dc.identifier.otheru0015_0000001_0002169
dc.identifier.otherNg_alatus_0004D_12509
dc.identifier.urihttps://ir.ua.edu/handle/123456789/2538
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Alabama Libraries
dc.relation.hasversionborn digital
dc.relation.ispartofThe University of Alabama Electronic Theses and Dissertations
dc.relation.ispartofThe University of Alabama Libraries Digital Collections
dc.rightsAll rights reserved by the author unless otherwise indicated.en_US
dc.subjectKinesiology
dc.titleCardiovascular and themoregulatory responses to ice slurry ingestion during heat stressen_US
dc.typethesis
dc.typetext
etdms.degree.departmentUniversity of Alabama. Department of Kinesiology
etdms.degree.disciplineHuman Performance
etdms.degree.grantorThe University of Alabama
etdms.degree.leveldoctoral
etdms.degree.namePh.D.
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
file_1.pdf
Size:
1.31 MB
Format:
Adobe Portable Document Format