Structure-property relationships of solid state additive manufactured aluminum alloy 2219 and inconel 625

Thumbnail Image
Journal Title
Journal ISSN
Volume Title
University of Alabama Libraries

In this investigation, the processing-structure-property relations are correlated for solid state additively manufactured (SSAM) Inconel 625 (IN 625) and a SSAM aluminum alloy 2219 (AA2219). This is the first research of these materials processed by a new SSAM method called additive friction stir (AFS). The AFS process results in a refined grain structure by extruding solid rod through a rotating tool generating heat and severe plastic deformation. In the case of the AFS IN625, the IN625 alloy is known for exhibiting oxidation resistance and temperature mechanical stability, including strength and ductility. This study is the first to investigate the beneficial grain refinement and densification produced by AFS in IN625 that results in advantageous mechanical properties (YS, UTS, εf) at both quasi-static and high strain rate. Electron Backscatter Diffraction (EBSD) observed dynamic recrystallization and grain refinement during the layer deposition in the AFS specimens, where the results identified fine equiaxed grain structures formed by dynamic recrystallization (DRX) with even finer grain structures forming at the layer interfaces. The EBSD quantified grains as fine as 0.27 microns in these interface regions while the average grain size was approximately 1 micron. Additionally, this is the first study to report on the strain rate dependence of AFS IN625 through quasi-static (QS) (0.001/s) and high strain rate (HR) (1500/s) tensile experiments using a servo hydraulic frame and a direct tension-Kolsky bar, respectively, which captured both yield and ultimate tensile strengths increasing as strain rate increased. Fractography performed on specimens showed a ductile fracture surface on both QS, and HR. Alternatively, the other AFS material system investigated in this study, AA2219, is mostly used for aerospace applications, specifically for rocket fuel tanks. EBSD was performed in the cross-section of the AA2219, also exhibiting DRX with equiaxed microstructure in the three directions and an average grain size of 2.5 microns. EBSD PFs showed that the material has a strong torsional fiber A texture in the top of the build, and this texture gets weaker in the middle and bottom sections. TEM showed that there are no ’ precipitates in the as-deposited cross-section, therefore no precipitation strengthening should be expected. Strain rate and stress state dependence was study, and in both tension and compression, with an increase in strain rate, the YS increase and the UTS decreased. Ductile fracture surface was observed on specimens tested to failure in both QS and HR. The AFS AA2219 processing-structure-property relations are being studied in this investigation to address the stress-state and strain rate dependence of AFS AA2219 with an internal sate variable (ISV) plasticity-damage model to capture the different yield stress, work hardening and failure strain in the AFS AA2219 for high fidelity modeling of AFS components. The ISV plasticity model successfully captured the material behavior in tension, compression, tension-followed-by-compression and compression-followed-by-tension experiments. Furthermore, the damage parameters of the model were calibrated using the final void density measured from the fracture surfaces.

Electronic Thesis or Dissertation
Materials science, Mechanical engineering