Photopolymerization-based synthesis of iron oxide nanoparticle embedded PNIPAM nanogels for biomedical applications

dc.contributor.authorDenmark, Daniel J.
dc.contributor.authorHyde, Robert H.
dc.contributor.authorGladney, Charlotte
dc.contributor.authorManh-Huong Phan
dc.contributor.authorBisht, Kirpal S.
dc.contributor.authorSrikanth, Hariharan
dc.contributor.authorMukherjee, Pritish
dc.contributor.authorWitanachchi, Sarath
dc.contributor.otherState University System of Florida
dc.contributor.otherUniversity of South Florida
dc.contributor.otherUniversity of Alabama Tuscaloosa
dc.date.accessioned2021-07-28T16:20:18Z
dc.date.available2021-07-28T16:20:18Z
dc.date.issued2017
dc.description.abstractConventional therapeutic techniques treat patients by delivering biotherapeutics to the entire body. With targeted delivery, biotherapeutics are transported to the afflicted tissue reducing exposure to healthy tissue. Targeted delivery devices are minimally composed of a stimuli responsive polymer allowing triggered release and magnetic nanoparticles enabling targeting as well as alternating magnetic field (AMF) heating. Although more traditional methods, like emulsion polymerization, have been used to realize such devices, the synthesis is problematic. For example, surfactants preventing agglomeration must be removed from the product increasing time and cost. Ultraviolet (UV) photopolymerization is more efficient and ensures safety by using biocompatible substances. Reactants selected for nanogel fabrication were N-isopropylacrylamide (monomer), methylene bis-acrylamide (crosslinker), and Irgacure 2959 (photoinitiator). The 10 nm superparamagnetic nanoparticles for encapsulation were composed of iron oxide. Herein, a low-cost, scalable, and rapid, custom-built UV photoreactor with in situ, spectroscopic monitoring system is used to observe synthesis. This method also allows in situ encapsulation of the magnetic nanoparticles simplifying the process. Nanogel characterization, performed by transmission electron microscopy, reveals size-tunable nanogel spheres between 40 and 800 nm in diameter. Samples of nanogels encapsulating magnetic nanoparticles were subjected to an AMF and temperature increase was observed indicating triggered release is possible. Results presented here will have a wide range of applications in medical sciences like oncology, gene delivery, cardiology, and endocrinology.en_US
dc.format.mimetypeapplication/pdf
dc.identifier.citationDenmark, D., Hyde, R., Gladney, C., Phan, M., Bisht, K., Srikanth, H., Mukherjee, P., Witanachchi, S. (2017): Photopolymerization-Based Synthesis of Iron Oxide Nanoparticle Embedded PNIPAM Nanogels for Biomedical Applications. Drug Delivery. 24(1).
dc.identifier.doi10.1080/10717544.2017.1373164
dc.identifier.orcidhttps://orcid.org/0000-0002-6771-728X
dc.identifier.urihttp://ir.ua.edu/handle/123456789/7997
dc.languageEnglish
dc.language.isoen_US
dc.publisherTaylor & Francis
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMagnetic nanoparticles
dc.subjectstimuli-responsive polymer
dc.subjecttargeted biotherapeutic delivery
dc.subjectinduction heating
dc.subjectphotopolymerization
dc.subjectPOLY-N-ISOPROPYLACRYLAMIDE
dc.subjectMAGNETIC NANOPARTICLES
dc.subjectPARTICLES
dc.subjectTURBIDITY
dc.subjectDELIVERY
dc.subjectPharmacology & Pharmacy
dc.titlePhotopolymerization-based synthesis of iron oxide nanoparticle embedded PNIPAM nanogels for biomedical applicationsen_US
dc.typetext
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Photopolymerization-Based Synthesis of Iron Oxide Nanoparticle Embedded PNIPAM Nanogels for Biomedical Applications_Denmark.pdf
Size:
1.53 MB
Format:
Adobe Portable Document Format
Description:
main article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.27 KB
Format:
Item-specific license agreed upon to submission
Description: