BTZ black hole entropy from a Chern-Simons matrix model

Loading...
Thumbnail Image

Date

2013-10-30

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing

Abstract

We examine a Chern-Simons matrix model which we propose as a toy model for studying the quantum nature of black holes in 2 + 1 gravity. Its dynamics is described by two N x N matrices, representing the two spatial coordinates. The model possesses an internal SU(N) gauge symmetry, as well as an external rotation symmetry. The latter corresponds to the rotational isometry of the BTZ solution, and does not decouple from SU(N) gauge transformations. The system contains an invariant which is quadratic in the spatial coordinates. We obtain its spectrum and degeneracy, and find that the degeneracy grows exponentially in the large N limit. The usual BTZ black hole entropy formula is recovered upon identifying the quadratic invariant with the square of the black hole horizon radius. The quantum system behaves collectively as an integer (half-integer) spin particle for even (odd) N under 2 pi-rotations.

Description

Keywords

Astronomy & Astrophysics, Quantum Science & Technology, Physics, Multidisciplinary, Physics, Particles & Fields, Physics

Citation

Chaney, A., Lu, L., Stern, A. (2013): BTZ Black Hole Entropy from a Chern-Simons Matrix Model. Classical and Quantum Gravity, 30(23). DOI: http://dx.doi.org/10.1088/0264-9381/30/23/235016