Seismic interpretation and structural restoration of a seismic profile through the Southern Appalachian thrust belt under Gulf Coastal Plain sediments

dc.contributor.authorBailey, Ryan Michael
dc.contributor.otherUniversity of Alabama Tuscaloosa
dc.coverage.spatialAppalachian Region, Southern
dc.date.accessioned2022-03-29T15:28:00Z
dc.date.available2022-03-29T15:28:00Z
dc.date.issued2007
dc.descriptionElectronic Thesis or Dissertationen_US
dc.description.abstractIn the southern part of the Appalachian thrust belt, the thrust system is buried by Gulf Coastal Plain sediments; thus, directly studying this Paleozoic thrust belt is impossible. However, multi-channel seismic data and well log data are used to explore this thrust belt. In this region, Gulf Coastal Plain sediments cover the Paleozoic thrust belt that formed during the Ouachita and Alleghenian orogeny. Due to a lack of well control and limited availability of proprietary quality seismic reflection profiles, only a few other studies interpret subsurface structures beneath the Gulf Coastal Plain (Thomas, 1973; Thomas, 1989; Bally, 1983; Hale-Erlich and Coleman, 1993). Stratigraphic thicknesses in the thrust belt were derived from the Ethel M. Koch #1 well and in the Black Warrior Basin from the James W. Sterling 17-14 well. Two additional wells, the Willis #1 and Dollarhide #1 were used to identify the depth to formation tops within the interpretation. An 84 kilometer long seismic profile was depth-converted using a sonic log from the Koch well and then projected onto a straight line perpendicular to the Appalachian thrust belt which shortened the length of the line to 78 kilometers. Five main horizons were interpreted in two way travel time and depth-converted using interval velocities derived from synthetic seismograms and the sonic log in the Koch well. A 14 kilometer zone of poorly imaged seismic data within line segment 691-1 A may be the result of high velocity material juxtaposed with the base of the Coastal Plain sediments. Two interpretations, both incorporating forward-propagating sequences, were made. The depth of the upper detachment altered the structural style of the ramp anticline on thrust 1 from a fault bend fold in interpretation #1 to a fault propagation fold in interpretation #2. Consequently, the depth of the detachment along with the fault trace of thrust 2 effected the thickness of units incorporated in thrust 2 and the thickness and number of units incorporated in thrust 3. The lengths of the units are quantitative, while the actual positions are speculative. The flexural slip method and line length balancing was used to balance the cross sections. Shortening estimates range from 23 kilometers or 29% shortening in interpretation # 1 to 19 kilometers or 26% shortening in interpretation #2.en_US
dc.format.extentxiii, 71 leaves ; (4 folded leaves)
dc.format.mediumelectronic
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://ir.ua.edu/handle/123456789/8360
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Alabama Libraries
dc.relation.ispartofThe University of Alabama Electronic Theses and Dissertations
dc.relation.ispartofThe University of Alabama Libraries Digital Collections
dc.rightsAll rights reserved by the author unless otherwise indicated.en_US
dc.subjectThrust belts
dc.subjectGeology, Structural
dc.titleSeismic interpretation and structural restoration of a seismic profile through the Southern Appalachian thrust belt under Gulf Coastal Plain sedimentsen_US
dc.typethesis
dc.typetext
etdms.degree.departmentUniversity of Alabama. Department of Geological Sciences
etdms.degree.disciplineGeology
etdms.degree.grantorThe University of Alabama
etdms.degree.levelmaster's
etdms.degree.nameM.S.
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1005632588-Bailey-2007.pdf
Size:
15.49 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.27 KB
Format:
Item-specific license agreed upon to submission
Description: