Ambient-pressure CVD of graphene on low-index Ni surfaces using methane: A combined experimental and first-principles study

dc.contributor.authorMafra, Daniela L.
dc.contributor.authorOlmos-Asar, Jimena A.
dc.contributor.authorNegreiros, Fabio R.
dc.contributor.authorReina, Alfonso
dc.contributor.authorKim, Ki Kang
dc.contributor.authorDresselhaus, Mildred S.
dc.contributor.authorKong, Jing
dc.contributor.authorMankey, Gary J.
dc.contributor.authorAraujo, Paulo T.
dc.contributor.otherMassachusetts Institute of Technology (MIT)
dc.contributor.otherUniversidade Federal do ABC (UFABC)
dc.contributor.otherConsejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET)
dc.contributor.otherNational University of Cordoba
dc.contributor.otherDongguk University
dc.contributor.otherUniversity of Alabama Tuscaloosa
dc.contributor.otherUniversidade Federal do Para
dc.date.accessioned2019-07-18T20:13:22Z
dc.date.available2019-07-18T20:13:22Z
dc.date.issued2018-07-23
dc.description.abstractThe growth of large area single-layer graphene (1-LG) is studied using ambient pressure chemical vapor deposition on single-crystal Ni(111), Ni(110), and Ni(100). By varying both the furnace temperature in the range of 800-1100 degrees C and the gas flow through the growth chamber, uniform, high-quality 1-LG is obtained for Ni(111) and Ni(110) single crystals and for Ni(100) thin films. Surprisingly, only multilayer graphene growth could be obtained for single-crystal Ni(100). The experimental results are analyzed to determine the optimum combination of temperature and gas flow. Characterization with optical microscopy, Raman spectroscopy, and optical transmission support our findings. Density-functional theory calculations are performed to determine the energy barriers for diffusion, segregation, and adsorption, and model the kinetic pathways for formation of different carbon structures on the low-index surfaces of Ni.en_US
dc.format.mimetypeapplication/pdf
dc.identifier.citationMafra, D., et al. (2018): Ambient-pressure CVD of Graphene on Low-index Ni Surfaces using Methane: A Combined Experimental and First-Principles Study. Physical Review Materials, 2(7). DOI: https://doi.org/10.1103/PhysRevMaterials.2.073404
dc.identifier.doi10.1103/PhysRevMaterials.2.073404
dc.identifier.orcidhttps://orcid.org/0000-0003-3163-5159
dc.identifier.orcidhttps://orcid.org/0000-0002-4380-9702
dc.identifier.urihttp://ir.ua.edu/handle/123456789/5995
dc.languageEnglish
dc.language.isoen_US
dc.publisherAmerican Physical Society
dc.subjectFEW-LAYER GRAPHENE
dc.subjectLARGE-AREA
dc.subjectHIGH-QUALITY
dc.subjectCARBON
dc.subjectNICKEL
dc.subjectSEGREGATION
dc.subjectGROWTH
dc.subjectNI(111)
dc.subjectFILMS
dc.subjectADSORPTION
dc.subjectMaterials Science, Multidisciplinary
dc.subjectMaterials Science
dc.titleAmbient-pressure CVD of graphene on low-index Ni surfaces using methane: A combined experimental and first-principles studyen_US
dc.typetext
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GMankey_Ambient-pressure CVD of Graphene on Low-index Ni Surfaces using Methane A Combined Experimental and First-Principles Study_Physics and Astronomy.pdf
Size:
3.51 MB
Format:
Adobe Portable Document Format
Description:
Main article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.27 KB
Format:
Item-specific license agreed upon to submission
Description: