Conjugate operator on variable harmonic Bergman space

dc.contributorCruz-Uribe, David
dc.contributorMoen, Kabe
dc.contributorShao, Yuanzhen
dc.contributorGan, Yu
dc.contributor.advisorFerguson, Timothy
dc.contributor.authorWang, Xuan
dc.contributor.otherUniversity of Alabama Tuscaloosa
dc.date.accessioned2020-09-30T17:24:57Z
dc.date.available2020-09-30T17:24:57Z
dc.date.issued2020
dc.descriptionElectronic Thesis or Dissertationen_US
dc.description.abstractComplex analytic functions have astonishing and amazing properties. Their real parts and imaginary parts are deeply connected by the Cauchy-Riemann equations. It is natural to ask if we obtain some information about the real part, what can we conclude about the imaginary part, which is called the harmonic conjugate of the real part? Treating the relationship as an operation, the question becomes how well behaved is the harmonic conjugate operator? In this paper, by modifying some classical methods in constant exponent Hardy and Bergman spaces and developing new ways for the modern variable exponent spaces, we will study the harmonic conjugate operator on variable exponent Bergman spaces and prove that the operator is bounded when the exponent has positive minimum and finite maximum and satisfies the log-Holder condition.en_US
dc.format.extent35 p.
dc.format.mediumelectronic
dc.format.mimetypeapplication/pdf
dc.identifier.otheru0015_0000001_0003624
dc.identifier.otherWang_alatus_0004D_14133
dc.identifier.urihttp://ir.ua.edu/handle/123456789/7023
dc.languageEnglish
dc.language.isoen_US
dc.publisherUniversity of Alabama Libraries
dc.relation.hasversionborn digital
dc.relation.ispartofThe University of Alabama Electronic Theses and Dissertations
dc.relation.ispartofThe University of Alabama Libraries Digital Collections
dc.rightsAll rights reserved by the author unless otherwise indicated.en_US
dc.subjectMathematics
dc.titleConjugate operator on variable harmonic Bergman spaceen_US
dc.typethesis
dc.typetext
etdms.degree.departmentUniversity of Alabama. Department of Mathematics
etdms.degree.disciplineMathematics
etdms.degree.grantorThe University of Alabama
etdms.degree.leveldoctoral
etdms.degree.namePh.D.
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
file_1.pdf
Size:
283.52 KB
Format:
Adobe Portable Document Format