Surface Grown Copper Nanowires for Improved Cooling Efficiency

Show simple item record Balachandra, Anagi M. Darsanasiri, A.G.N.D. Harsini, Iman Soroushian, Parviz Bakker, Martin G. 2021-07-28T18:12:45Z 2021-07-28T18:12:45Z 2018
dc.identifier.citation Balachandra, A., Darsanasiri, A., Harsini, I., Soroushian, P., Bakker, M. (2018): Surface Grown Copper Nanowires for Improved Cooling Efficiency. Cogent Engineering. 5(1). en_US
dc.description.abstract The interactions between heat sink surfaces and coolant play important roles in cooling methods. This study relies upon controlled nanostructuring of heat sink surfaces that produces orders of magnitude increases in surface area, excites local vortexes and improves the phase change mechanisms to enhance cooling efficiency. A scalable, economical and environmentally benign technique to grow copper nanowires with a strong/conductive base-anchorage on the surface of copper and related materials is described. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were used to monitor the reduction and morphology of the nanowires. Transmission electron microscopy (TEM), electron diffraction (ED) and X-ray diffraction (XRD) were employed to understand the structure of the as-grown copper hydroxide nanowires and reduced copper nanowires. The convective heat transfer of nanostructured surfaces was measured in the laboratory and compared to a theoretical treatment of the nanowire array effects on convective heat transfer. The various surface treatments tested showed heat transfer increases of up to 93% in good agreement with a theoretical analysis. en_US
dc.format.mimetype application/pdf
dc.language English en_US
dc.subject Nanoscale heat transfer en_US
dc.subject heat sink surface cooling en_US
dc.subject copper nanowire en_US
dc.subject Chemistry en_US
dc.subject Material Science en_US
dc.subject Materials Science en_US
dc.title Surface Grown Copper Nanowires for Improved Cooling Efficiency en_US
dc.type text

Files in this item

This item appears in the following Collection(s)

Show simple item record Except where otherwise noted, this item's license is described as

Search DSpace


My Account