dc.contributor.author |
Greer, Ashton D. |
|
dc.contributor.author |
Willbanks, Zachary B. |
|
dc.contributor.author |
Clifton, Leah D. |
|
dc.contributor.author |
Wilson, Bradford |
|
dc.contributor.author |
Graettinger, Andrew J. |
|
dc.coverage.spatial |
Tuscaloosa (Ala.) |
|
dc.date.accessioned |
2021-06-24T13:25:13Z |
|
dc.date.available |
2021-06-24T13:25:13Z |
|
dc.date.issued |
2018 |
|
dc.identifier.citation |
Greer, A., Willbanks, Z., Clifton, L., Wilson, B., Graettinger, A. (2018): GIS-Enabled Culvert Design: A Case Study in Tuscaloosa, Alabama. Advances in Civil Engineering, Volume 2018. |
en_US |
dc.identifier.uri |
http://ir.ua.edu/handle/123456789/7811 |
|
dc.description.abstract |
A GIS-enabled culvert design module is presented. *is module employs Python programming to combine a proposed culvert location, topography, land use, and rainfall data to automatically design a culvert. *e module is embedded within ESRI ArcGIS 10.4 software, providing a seamless single platform that eliminates error propagation associated with cross-platform data transfer as well as providing 95% time savings over traditional calculation methods. *e module uses United States Geological Survey digital elevation data to analyze watershed topography. Runoff coefficients are determined from data available through the National Land Cover Database. Rainfall data are retrieved from the National Oceanic and Atmospheric Administration and combined with watershed and land use information to calculate peak discharge using the rational method. Peak discharge is then combined with culvert design parameters to design a single-barrel culvert. *e module was used to redesign ten existing culverts along a highway in Tuscaloosa, Alabama, resulting in designs for updated land cover and rainfall conditions. Results from the techniques developed herein can be used for planning purposes and to highlight vulnerabilities in the existing infrastructure. *e automation methods may be extended to other hydrologic objectives and runoff mitigation design such as open-channel design and detention or retention ponds. |
en_US |
dc.description.uri |
https://doi.org/10.1155/2018/4648134 |
|
dc.format.mimetype |
application/pdf |
|
dc.language |
English |
en_US |
dc.relation.uri |
https://creativecommons.org/licenses/by/4.0/ |
|
dc.subject.lcsh |
Culverts |
en_US |
dc.subject.lcsh |
Geographic information systems |
en_US |
dc.subject.lcsh |
Design and construction |
en_US |
dc.title |
GIS-Enabled Culvert Design: A Case Study in Tuscaloosa, Alabama |
en_US |
dc.type |
text |
|