Comprehensive analysis of filter inductor asymmetry on conducted emissions in buck and boost converters

Show simple item record

dc.contributor Freeborn, Todd
dc.contributor Brovont, Aaron
dc.contributor.advisor Lemmon, Andrew
dc.contributor.author Helton, Jared
dc.date.accessioned 2020-09-30T17:23:47Z
dc.date.available 2020-09-30T17:23:47Z
dc.date.issued 2020
dc.identifier.other u0015_0000001_0003569
dc.identifier.other Helton_alatus_0004M_14165
dc.identifier.uri http://ir.ua.edu/handle/123456789/6968
dc.description Electronic Thesis or Dissertation
dc.description.abstract Increased edge rates and switching frequencies have led to higher efficiency and increased power density for dc-dc converter topologies utilizing wide band-gap (WBP) devices. These improvements in intended behavior come with a cost in the form of elevated EMI profiles and higher magnitude CM currents, which cause challenges in fielded systems. Therefore, there is an increasing need to model the CM behavior for these systems and provide efficient EMI mitigation techniques. A method to decompose a system’s mixed-mode (MM) behavior into its differential-mode (DM) and common-mode (CM) behavior is utilized in this thesis. This thesis analyzes the role of filter inductor asymmetry in decreasing emissions in common dc-dc converters while preserving the intended behavior of these systems. The proposed decomposition method is applied to buck and boost converters. This method produces common-mode equivalent models (CEMs) that provide simplified expressions for the CM behavior of systems. CEMs are developed for both simplified and practical implementations of the considered topologies. Analysis of these CEMs reveals that both converters demonstrate similar CM behavior trends for the simplified models but exhibit different CM behavior trends for the practical models. Two prototype buck converters are then utilized to empirically validate the CEMs for this topology. A low-power prototype is utilized to validate the simplified model. This example demonstrates the necessity of considering high-frequency voltage ripple to accurately represent the CM behavior of this topology. A high-power prototype is utilized to validate the practical model. This example demonstrates the sensitivity of a fielded system to unintended couplings with the grounding network.
dc.format.extent 163 p.
dc.format.medium electronic
dc.format.mimetype application/pdf
dc.language English
dc.language.iso en_US
dc.publisher University of Alabama Libraries
dc.relation.ispartof The University of Alabama Electronic Theses and Dissertations
dc.relation.ispartof The University of Alabama Libraries Digital Collections
dc.relation.hasversion born digital
dc.rights All rights reserved by the author unless otherwise indicated.
dc.subject.other Electrical engineering
dc.title Comprehensive analysis of filter inductor asymmetry on conducted emissions in buck and boost converters
dc.type thesis
dc.type text
etdms.degree.department University of Alabama. Department of Electrical and Computer Engineering
etdms.degree.discipline Electrical and Computer Engineering
etdms.degree.grantor The University of Alabama
etdms.degree.level master's
etdms.degree.name M.S.


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account