Integrability of the Wess-Zumino-Witten Model as a Non-ultralocal Theory

Show simple item record

dc.contributor.author Stern, Allen
dc.date.accessioned 2019-07-23T20:57:58Z
dc.date.available 2019-07-23T20:57:58Z
dc.date.issued 1996-11-28
dc.identifier.citation Rajeev, S., Stern, A., Vitale, P. (1996): Integrability of the Wess-Zumino-Witten Model as a Non-ultralocal Theory. Physics Letters B, 388(4). DOI: https://doi.org/10.1016/S0370-2693(96)01224-5 en_US
dc.identifier.uri http://ir.ua.edu/handle/123456789/6033
dc.description.abstract We consider the 2-dimensional Wess-Zumino-Witten (WZW) model in the canonical formalism introduced by Rajeev, Sparano and Vitale [Int J. Mod. Phys. A 31 (1994) 5469]. Using an r-s matrix approach to non-ultralocal field theories we find the Poisson algebra of monodromy matrices and of conserved quatities with a new, non-dynamical, r matrix. en_US
dc.format.mimetype application/pdf en_US
dc.language English en_US
dc.subject Wess-Zumino-Witten model en_US
dc.subject non-ultralocal field theories en_US
dc.title Integrability of the Wess-Zumino-Witten Model as a Non-ultralocal Theory en_US
dc.type text en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account