Low Scale Gravity Mediation with Warped Extra Dimension and Collider Phenomenology on the Hidden Sector

Abstract

We propose a scenario of gravity mediated supersymmetry breaking (gravity mediation) in a supersymmetric Randall-Sundrum model. In our setup, both the visible sector and the hidden sector coexist on the infrared (IR) brane. We introduce the Polonyi model as a simple hidden sector. Because of the warped metric, the effective cutoff scale on the IR brane is “warped down,” so that the gravity mediation occurs at a low scale. As a result, the gravitino is naturally the lightest superpartner (LSP) and contact interactions between the hidden and the visible sector fields become stronger. We address phenomenologies for various IR cutoff scales. In particular, we investigate collider phenomenology involving a scalar field (Polonyi field) in the hidden sector for the case with the IR cutoff around 10 TeV. We find a possibility that the hidden sector scalar can be produced at the LHC and the international linear collider (ILC). Interestingly, the scalar behaves like the Higgs boson of the standard model in the production process, while its decay process is quite different and, once produced, it will provide us with a very clean signature. The hidden sector may be no longer hidden.

Description
Keywords
Supersymmetric models
Citation