dc.contributor.author |
Lu, Lei |
|
dc.contributor.author |
Stern, Allen |
|
dc.date.accessioned |
2019-04-26T17:40:12Z |
|
dc.date.available |
2019-04-26T17:40:12Z |
|
dc.date.copyright |
2012 |
|
dc.date.issued |
2012-07-01 |
|
dc.identifier.citation |
Gouba, L., Stern, A. (2012): Particle Dynamics on Snyder Space. Nuclear Physics B,
860(1). DOI: https://doi.org/10.1016/j.nuclphysb.2012.02.012 |
en_US |
dc.identifier.uri |
http://ir.ua.edu/handle/123456789/5483 |
|
dc.description.abstract |
We examine Hamiltonian formalism on Euclidean Snyder space. The latter corresponds to a lattice in the quantum theory. For any given dynamical system, it may not be possible to identify time with a real number parametrizing the evolution in the quantum theory. The alternative requires the introduction of a dynamical time operator.We obtain the dynamical time operator for the relativistic (nonrelativistic) particle, and use it to construct the generators of Poincaré (Galilei) group on Snyder space. |
en_US |
dc.description.uri |
https://doi.org/10.1016/j.nuclphysb.2012.02.012 |
|
dc.format.mimetype |
application/pdf |
en_US |
dc.language |
English |
en_US |
dc.publisher |
Elsevier |
en_US |
dc.subject |
Snyder space |
en_US |
dc.subject.lcsh |
Lattice theory |
en_US |
dc.subject.lcsh |
Quantum field theory |
en_US |
dc.subject.lcsh |
Dynamics of a particle |
en_US |
dc.title |
Particle Dynamics on Snyder Space |
en_US |
dc.type |
text |
en_US |
dc.rights.holder |
Elsevier B. V. |
en_US |