Supersymmetric Extensions of the Snyder Algebra

Show simple item record

dc.contributor.author Gouba, L.
dc.contributor.author Stern, Allen
dc.date.accessioned 2019-04-26T16:25:31Z
dc.date.available 2019-04-26T16:25:31Z
dc.date.copyright 2011
dc.date.issued 2012-04-11
dc.identifier.citation Gouba, L., Stern, A. (2012): Resonances in SU(2) Supersymmetric Extensions of the Snyder Algebra. Nuclear Physics B, 857(2). DOI: https://doi.org/10.1016/j.nuclphysb.2011.12.001 en_US
dc.identifier.uri http://ir.ua.edu/handle/123456789/5482
dc.description.abstract We obtain a minimal supersymmetric extension of the Snyder algebra and study its representations. The construction differs from the general approach given in Hatsuda and Siegel (arXiv:hep-th/0311002) and does not utilize super-de Sitter groups. The spectra of the position operators are discrete, implying a lattice description of space, and the lattice is compatible with supersymmetry transformations. en_US
dc.description.uri https://doi.org/10.1016/j.nuclphysb.2011.12.001
dc.format.mimetype application/pdf en_US
dc.language English en_US
dc.publisher Elsevier en_US
dc.subject Snyder algebra en_US
dc.subject.lcsh Lattice theory en_US
dc.subject.lcsh Spinor analysis en_US
dc.title Supersymmetric Extensions of the Snyder Algebra en_US
dc.type text en_US
dc.rights.holder Elsevier B. V. en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account