Supersymmetric Extensions of the Snyder Algebra

Show simple item record Gouba, L. Stern, Allen 2019-04-26T16:25:31Z 2019-04-26T16:25:31Z 2011 2012-04-11
dc.identifier.citation Gouba, L., Stern, A. (2012): Resonances in SU(2) Supersymmetric Extensions of the Snyder Algebra. Nuclear Physics B, 857(2). DOI: en_US
dc.description.abstract We obtain a minimal supersymmetric extension of the Snyder algebra and study its representations. The construction differs from the general approach given in Hatsuda and Siegel (arXiv:hep-th/0311002) and does not utilize super-de Sitter groups. The spectra of the position operators are discrete, implying a lattice description of space, and the lattice is compatible with supersymmetry transformations. en_US
dc.format.mimetype application/pdf en_US
dc.language English en_US
dc.publisher Elsevier en_US
dc.subject Snyder algebra en_US
dc.subject.lcsh Lattice theory en_US
dc.subject.lcsh Spinor analysis en_US
dc.title Supersymmetric Extensions of the Snyder Algebra en_US
dc.type text en_US
dc.rights.holder Elsevier B. V. en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


My Account