Ferromagnetic (Mn, N)-codoped ZnO nanopillars array: Experimental and computational insights

Show simple item record

dc.contributor.author Wang, D. D.
dc.contributor.author Xing, G. Z.
dc.contributor.author Yan, F.
dc.contributor.author Yan, Y. S.
dc.contributor.author Li, S.
dc.date.accessioned 2018-10-19T13:48:21Z
dc.date.available 2018-10-19T13:48:21Z
dc.date.issued 2014-01-16
dc.identifier.citation Wang, D., Xing, G., Yan, F., Yan, Y., Li, S. (2014): Ferromagnetic (Mn, N)-codoped ZnO nanopillars array: Experimental and computational insights. Applied Physics Letters, 104 (2). DOI: 10.1063/1.4861936 en_US
dc.identifier.uri http://ir.ua.edu/handle/123456789/4052
dc.description.abstract To reveal the mechanism responsible for ferromagnetism in transition metal and hole codoped oxide semiconductors, we carry out a comparative study on Mn-doped and (Mn, N)-codoped ZnO nanopillars. Compared with Mn-doped ZnO samples, (Mn, N)-codoped ZnO nanopillars exhibit an enhanced room temperature ferromagnetism. The modulation of bound magnetic polarons via Mn and N codoping corroborates the correlation between the ferromagnetism and hole carriers, which is also verified by first-principles density functional theory calculations. Our study suggests that the electronic band alteration as a result of codoping engineering plays a critical role in stabilizing the long-range magnetic orderings. en_US
dc.format.mimetype application/pdf en_US
dc.subject Nanomaterials en_US
dc.subject Microscopy en_US
dc.subject Metal oxides en_US
dc.subject Spintronics en_US
dc.subject Transition metals en_US
dc.subject Density functional theory en_US
dc.subject Chemical elements en_US
dc.subject Excitons en_US
dc.subject Polarons en_US
dc.subject Ferromagnetic materials en_US
dc.title Ferromagnetic (Mn, N)-codoped ZnO nanopillars array: Experimental and computational insights en_US
dc.type text en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account