Snowpack Reconstructions Incorporating Climate in the Upper Green River Basin (Wyoming)

Abstract

The Green River is the largest tributary of the Colorado River. Given that snowpack is the primary driver of streamflow, information on the long-term regional snowpack (regionalized April 1 Snow Water Equivalent (SWE)) variability would provide useful information for water managers and planners. Previous research efforts were unable to develop skillful SWE reconstructions using tree-ring chronologies in the Upper Green River Basin (UGRB) of Wyoming because of limited tree-ring chronologies in the area. The current research uses Principal Components Analysis to regionalize April 1 snowpack data in the UGRB. Recent research efforts developed six new tree-ring chronologies in and adjacent to the UGRB. These new chronologies, along with 38 existing chronologies, were correlated with the regionalized SWE data. Chronologies positively correlated at a 95% confidence level or higher were retained. Stepwise linear regressions were performed and a reconstruction of UGRB regional April 1 SWE was achieved (R2 = 0.21). Climate signals (Pacific Decadal Oscillation (PDO) and Southern Oscillation Index (SOI)) were introduced to the predictor variables and an additional regression was performed. Inclusion of the SOI resulted in a statistically skillful reconstruction (R2 = 0.58). Temporal drought periods for SWE and for streamflow were examined for the UGRB and a direct relationship was observed.

Description
Keywords
dendrochronology, snowpack reconstruction, Southern Oscillation, tree rings, Upper Green River Basin
Citation
Anderson, S., et al. (2012): Snowpack Reconstructions Incorporating Climate in the Upper Green River Basin (Wyoming). Tree-Ring Research, 68(2).