Control and power management schemes for distributed and battery powered systems

Show simple item record

dc.contributor Haskew, Tim A.
dc.contributor Hu, Fei
dc.contributor Ricks, Kenneth G.
dc.contributor Williams, Keith A.
dc.contributor.advisor Abu Qahouq, Jaber A. Huang, Wangxin 2017-04-26T14:25:37Z 2017-04-26T14:25:37Z 2016
dc.identifier.other u0015_0000001_0002325
dc.identifier.other Huang_alatus_0004D_12658
dc.description Electronic Thesis or Dissertation
dc.description.abstract Battery systems are widely used in many applications including portable electronics, EVs/HEVs, and distributed smart power grids. In addition to battery technologies, the battery management system (BMS) plays a critical role in enabling the widespread adoption of battery-powered applications. This dissertation work focuses on addressing several issues and improving performance of several aspects of battery powered applications. These focused topics include online monitoring of battery impedance, charge balancing between battery cells during both discharging and charging operation, and power electronic topologies and control in order to improve reliability, efficiency, and density of the battery-powered applications. In chapter 2, a practical method is presented in order to achieve accurate online battery impedance measurement while maintaining output voltage regulation of the power converter. The proposed method is based on converter duty cycle control and perturbation. As a result, all the external signal injection circuitries are eliminated. In chapter 3 and 4, the charge balancing issue is addressed from the root by automatically adjusting the discharge/charge rate of each cell based on a new distributed battery system architecture with energy sharing control. The proposed energy sharing controller does not require any charge/energy transfer between the cells, thus eliminating the power losses during energy transfer process. To gain insights into the dynamics of the energy sharing controlled distributed battery system, the state-space averaging small-signal modeling and controller design is performed in Chapter 5. Simulation and experimental results are presented for verification. Single-inductor multiple-output DC-DC converter has gained increased popularity in the portable applications where a battery is used to power multiple loads. However, a common issue facing the SIMO converter design is the cross regulation between the multiple outputs during steady-state and dynamic operations. To address this issue, a power-multiplexed controller is presented in Chapter 6 which eliminates the cross regulation between the outputs by multiplexing the conduction of each output channels. Each output is independently regulated under steady-state and dynamic operations regardless of the operating mode, i.e., continuous or discontinuous conduction mode. Chapter 7 summarizes this work and provides conclusions before discussing some possible future research directions related to this dissertation work.
dc.format.extent 172 p.
dc.format.medium electronic
dc.format.mimetype application/pdf
dc.language English
dc.language.iso en_US
dc.publisher University of Alabama Libraries
dc.relation.ispartof The University of Alabama Electronic Theses and Dissertations
dc.relation.ispartof The University of Alabama Libraries Digital Collections
dc.relation.hasversion born digital
dc.rights All rights reserved by the author unless otherwise indicated.
dc.subject.other Electrical engineering
dc.title Control and power management schemes for distributed and battery powered systems
dc.type thesis
dc.type text University of Alabama. Dept. of Electrical and Computer Engineering Electrical and Computer Engineering The University of Alabama doctoral Ph.D.

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


My Account