Search for effective spin injection heterostructures based on half-metal heusler alloys/gallium arsenide semiconductors: a theoretical investigation

Show simple item record

dc.contributor Palmstrom, Christopher
dc.contributor Voyles, Paul
dc.contributor Thompson, Gregory B.
dc.contributor Lee, Eunseok
dc.contributor.advisor Butler, W. H. Sivakumar, Chockalingam Sivakumar 2017-03-01T17:48:03Z 2017-03-01T17:48:03Z 2016
dc.identifier.other u0015_0000001_0002424
dc.identifier.other Sivakumar_alatus_0004D_12766
dc.description Electronic Thesis or Dissertation
dc.description.abstract Efficient electrical spin injection from half-metal (HM) electrodes into semiconducting (SC) channel material is a desirable aspect in spintronics, but a challenging one. Half-metals based on the Heusler alloy family are promising candidates as spin sources due to their compatibility with compound SCs, and very high Curie temperatures. Numerous efforts were made in the past two decades to grow atomically abrupt interfaces between HM_Heusler and SC heterostructures. However, diffusion of magnetic impurities into the semiconductor, defects and disorder near the interface, and formation of reacted phases were great challenges. A number of theoretical efforts were undertaken to understand the role of such material defects in destroying the half-metallicity and also to propose promising half-metal/SC heterostructures based on first principles. This dissertation summarizes the investigations undertaken to decode the complexity of, and to understand the various physical properties of, a number of real-world Heusler/SC heterostructure samples, based on the ab initio density functional theory (DFT) approach. In addition, it summarizes various results from the first principles-based search for promising half-metal/SC heterostructures. First, I present results from DFT-based predictive models of actual Co_2MnSi (CMS)/GaAs heterostructures grown in (001) texture. I investigate the physical, chemical, electronic, and magnetic properties to understand the complexity of these structures and to pinpoint the origin of interfacial effects, when present. Based on the investigations of such models, I discuss the utility of those actual samples in spintronic applications. Next, I summarise the results from an ab initio DFT-based survey of 6 half-Heusler half-metal/GaAs heterostructure models in (110) texture, since compound semiconductors such as GaAs have very long spin lifetime in (110) layering. I show 3 half-Heusler alloys (CoVAs, NiMnAs, and RhFeGe), that when interfaced with GaAs(110), fully preserve the half-metallicity at the interface. Finally, I show the advantages of inserting half-Heusler SCs, particularly CoTiAs and CoTiSb, as spacers in between CMS/GaAs systems in (110) layering. Based on DFT calculations, I show that CoTiAs is a promising spacer that could enhance the perpendicular magnetic anisotropy in CMS, while preserving the important half-metallic character at the heterojunctions between CMS/CoTiAs/GaAs(110). This spacer could also serve to prevent in-diffusion of magnetic impurities into the channel material.
dc.format.extent 107 p.
dc.format.medium electronic
dc.format.mimetype application/pdf
dc.language English
dc.language.iso en_US
dc.publisher University of Alabama Libraries
dc.relation.ispartof The University of Alabama Electronic Theses and Dissertations
dc.relation.ispartof The University of Alabama Libraries Digital Collections
dc.relation.hasversion born digital
dc.rights All rights reserved by the author unless otherwise indicated.
dc.subject.other Physics
dc.subject.other Condensed matter physics
dc.subject.other Materials Science
dc.title Search for effective spin injection heterostructures based on half-metal heusler alloys/gallium arsenide semiconductors: a theoretical investigation
dc.type thesis
dc.type text University of Alabama. Dept. of Physics and Astronomy Metallurgical and Materials Engineering The University of Alabama doctoral Ph.D.

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


My Account