Control surface hinge moment prediction using computational fluid dynamics

Loading...
Thumbnail Image
Date
2016
Journal Title
Journal ISSN
Volume Title
Publisher
University of Alabama Libraries
Abstract

The following research determines the feasibility of predicting control surface hinge mo- ments using various computational methods. A detailed analysis is conducted using a 2D GA(W)-1 airfoil with a 20% plain flap. Simple hinge moment prediction methods are tested, including empirical Datcom relations and XFOIL. Steady-state and time-accurate turbulent, viscous, Navier-Stokes solutions are computed using Fun3D. Hinge moment coefficients are computed. Mesh construction techniques are discussed. An adjoint-based mesh adaptation case is also evaluated. An NACA 0012 45-degree swept horizontal stabilizer with a 25% ele- vator is also evaluated using Fun3D. Results are compared with experimental wind-tunnel data obtained from references. Finally, the costs of various solution methods are estimated. Results indicate that while a steady-state Navier-Stokes solution can accurately predict control surface hinge moments for small angles of attack and deflection angles, a time- accurate solution is necessary to accurately predict hinge moments in the presence of flow separation. The ability to capture the unsteady vortex shedding behavior present in mod- erate to large control surface deflections is found to be critical to hinge moment prediction accuracy. Adjoint-based mesh adaptation is shown to give hinge moment predictions similar to a globally-refined mesh for a steady-state 2D simulation.

Description
Electronic Thesis or Dissertation
Keywords
Aerospace engineering
Citation