Aerodynamic comparisons of membrane wings with cambered and flat frames at low reynolds number

Show simple item record

dc.contributor O'Neill, Charles R.
dc.contributor MacPhee, David W.
dc.contributor.advisor Hubner, James Paul
dc.contributor.author Wrist, Andrew Harley
dc.date.accessioned 2017-03-01T17:42:24Z
dc.date.available 2017-03-01T17:42:24Z
dc.date.issued 2016
dc.identifier.other u0015_0000001_0002292
dc.identifier.other Wrist_alatus_0004M_12684
dc.identifier.uri https://ir.ua.edu/handle/123456789/2633
dc.description Electronic Thesis or Dissertation
dc.description.abstract The limited size of micro air vehicles (MAVs) requires small power sources, leading to a need for high aerodynamic efficiency. Flexible membrane wings at the MAV scale can experience improved lift/drag ratios, delays in stall, and decreased time-averaged flow separation when compared to rigid wings. This research thesis examines the effect of frame camber on the aerodynamic characteristics of membrane wings. The frames for the wings were designed in SolidWorks and constructed using an Objet30 Pro 3D printer. The membranes are composed of silicone rubber. Tests were conducted in The University of Alabama’s low-speed wind tunnel in 135 Hardaway Hall in low Reynolds number flow (Re ~ 50,000). Aerodynamic force and moment measurements were acquired at angles-of-attack varying from -4 to 24°. The results were used to determine whether cambered frames provide membrane wings with aerodynamic advantages when compared to those with flat frames. Additionally, a digital image correlation (DIC) camera system was used to acquire time-averaged shapes for the membrane wings during wind tunnel tests. The wings were mounted vertically at angles-of-attack of 6° and 18° to represent the regions of maximum efficiency and approaching stall, respectively. An in-house MATLAB program was developed to average the deflection plots from the images and produce time-averaged shapes. Lifting-line theory was applied to the time-averaged shapes to calculate theoretical lift and induced drag coefficients. The experimental set-up, results, and conclusions are discussed.
dc.format.extent 98 p.
dc.format.medium electronic
dc.format.mimetype application/pdf
dc.language English
dc.language.iso en_US
dc.publisher University of Alabama Libraries
dc.relation.ispartof The University of Alabama Electronic Theses and Dissertations
dc.relation.ispartof The University of Alabama Libraries Digital Collections
dc.relation.hasversion born digital
dc.rights All rights reserved by the author unless otherwise indicated.
dc.subject.other Aerospace engineering
dc.title Aerodynamic comparisons of membrane wings with cambered and flat frames at low reynolds number
dc.type thesis
dc.type text
etdms.degree.department University of Alabama. Dept. of Aerospace Engineering and Mechanics
etdms.degree.discipline Aerospace Engineering
etdms.degree.grantor The University of Alabama
etdms.degree.level master's
etdms.degree.name M.S.


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account