Water quench thermal fatigue analysis of grade p22 and grade p91 steels

Loading...
Thumbnail Image
Date
2015
Journal Title
Journal ISSN
Volume Title
Publisher
University of Alabama Libraries
Abstract

Power plants and other facilities that utilize high temperature steam flow have been using corrosion-resistant steels with high creep-rupture strengths in their piping systems. Fatigue crack failures have occurred in these piping systems, potentially from the sudden temperature changes from the internal water spray system used to control steam temperature. A new test to investigate the thermal quench fatigue response of metals was developed to aid the study of these failures in P22 and P91 steel pipes. The focus of this thesis was to develop the test and begin development of the quench fatigue response of P22 and P91. Testing involved evaluating the pre and post-test hardness measurements of the quench fatigue specimens and correlating these results with the results of the quench fatigue runs. Specimens were evaluated in quench fatigue for two test conditions: a maximum stress condition and a stress loading similar to what has been measured in existing piping systems. The maximum stress state was used to induce failure in the specimens within a reasonable amount of time and to evaluate any change in material microstructure. The second test condition had a temperature drop of approximately 200 °C and more closely simulated general operating conditions for the piping systems in question. This test condition also included a preload on the specimen in the axial direction to simulate the stress induced from the internal pressure of the piping systems. In addition to experimental analysis, a finite element model was developed and tested to verify the initial material deformation that occurred from quench spraying.

Description
Electronic Thesis or Dissertation
Keywords
Mechanics, Materials science, Mechanical engineering
Citation