Influence of intermediate-scale wind disturbance on development and succession in quercus stands on the Cumberland Plateau

Show simple item record

dc.contributor Schweitzer, Callie J.
dc.contributor Steinberg, Michael K.
dc.contributor.advisor Hart, Justin L.
dc.contributor.author White, Stephen Daniel
dc.date.accessioned 2017-03-01T17:37:12Z
dc.date.available 2017-03-01T17:37:12Z
dc.date.issued 2014
dc.identifier.other u0015_0000001_0002100
dc.identifier.other White_alatus_0004M_11938
dc.identifier.uri https://ir.ua.edu/handle/123456789/2485
dc.description Electronic Thesis or Dissertation
dc.description.abstract Natural disturbances play important roles in shaping the structure and composition of all forest ecosystems and can be used to guide silvicultural practices. Disturbance intensity is measured along a gradient ranging from highly localized, gap-scale events to stand-replacing events. High wind storms such as downbursts, derechos, and low intensity tornadoes typically fall in the center of this gradient and result in intermediate-scale disturbances, removing 30-60% of basal area. Despite their frequency and widespread occurrence, little is known about how intermediate-scale disturbances drive stand development. On 20 April 2011, the Sipsey Wilderness Area in Alabama was affected by an EF1 tornado with accompanying straight-line winds. Stands were sampled in a stratified subjective sampling design to evaluate the effects of intermediate-scale wind disturbance on the development of Quercus stands in regard to structure and recruitment. My specific objectives were to: 1) quantify damage severity in basal area reduction and percent canopy loss of this particular disturbance along a gradient of wind disturbance, 2) detect structural acceleration or retrogression of stand development caused by an intermediate-scale wind disturbance, and 3) elucidate compositional acceleration or retrogression for an intermediate-scale wind disturbance. I established 109 0.04 ha plots across a gradient of disturbance, classified as control (undamaged), light, and moderate to inventory the effect of wind damage on development and succession. Basal area was reduced from 25.5 m2 ha-1 to 24.0 m2 ha-1 and 15.5 m2 ha-1 (p < 0.001) for light and moderate damage, respectively. The percent of live and damaged trees for control, light, and moderate was 0.3%, 3.0%, and 10.7%, respectively. PAR was significantly increased within the moderately damaged areas (p < 0.001). Logistical regression showed an increasing probability of mortality during wind disturbance with increasing diameter. Based on my findings, this intermediate-scale disturbance increased intra-stand heterogeneity and accelerated succession, favoring shade-tolerant taxa established in the understory.
dc.format.extent 48 p.
dc.format.medium electronic
dc.format.mimetype application/pdf
dc.language English
dc.language.iso en_US
dc.publisher University of Alabama Libraries
dc.relation.ispartof The University of Alabama Electronic Theses and Dissertations
dc.relation.ispartof The University of Alabama Libraries Digital Collections
dc.relation.hasversion born digital
dc.rights All rights reserved by the author unless otherwise indicated.
dc.subject.other Forestry
dc.subject.other Environmental science
dc.subject.other Natural resource management
dc.title Influence of intermediate-scale wind disturbance on development and succession in quercus stands on the Cumberland Plateau
dc.type thesis
dc.type text
etdms.degree.department University of Alabama. Dept. of Geography
etdms.degree.discipline Geography
etdms.degree.grantor The University of Alabama
etdms.degree.level master's
etdms.degree.name M.S.


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account