Theses and Dissertations - Department of Chemistry & Biochemistry
Permanent URI for this collection
Browse
Browsing Theses and Dissertations - Department of Chemistry & Biochemistry by Subject "Chemical engineering"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Characterization and catalytic applications of silver nanoparticles supported on hierarchically porous SiO_2 and Co_3O_4 monoliths(University of Alabama Libraries, 2017) Yildirim, Yasemin; Bakker, Martin G.; University of Alabama TuscaloosaHierarchically porous materials are of great interest in such applications as catalysis, drug delivery, chromatography, and electrochemical sensor arrays due to properties such as high surface area, large void volume, and tunable surface chemistry. In this study, we give the detailed report of the synthesis of supported Ag nanoparticles by nanocasting on to hierarchically porous SiO2 (silica) and Co3O4 (cobalt oxide) monoliths, as well as the use of these materials as heterogeneous catalysts for the hydrogenation and oxidation reactions. In the preliminary work, we investigated the synthesis of Ag supported on hierarchically porous SiO2 and Co3O4 monoliths, and the catalytic activity of these monoliths for the hydrogenation of MB (methylene blue) and MO (methyl orange) dyes in the presence of NaBH4 (sodium borohydride). The SiO2 monoliths were synthesized using a sol-gel technique. The Co3O4 monoliths were prepared by nanocasting, using the SiO2 monoliths as a template. The loading of Ag nanoparticles on the SiO2 and Co3O4 monoliths was done by a solution infiltration method using aqueous AgNO3 (silver nitrate) solution followed by reduction with ethylene glycol and hydrazine hydrate. Such monoliths also were used as continuous flow monolithic microreactors for the catalytic activity and stability studies for the hydrogenation of EO (eosin-Y) dye in the presence of NaBH4. Finally, the use of these monoliths for the oxidation of cyclohexene was investigated including the effects of temperature, oxidant, catalyst loading, and substrate to oxidant ratio. All these studies are presented in different sections depending on the different synthesis, procedures, and catalytic activity occurring in each heterogeneous catalyst.Item Mass spectrometry studies of peptides cationized by trivalent metal ions(University of Alabama Libraries, 2018) Commodore-Botoklo, Juliette Joan; Cassady, Carolyn J.; University of Alabama TuscaloosaThe field of proteomics is dedicated to understanding how a protein’s structure and function relates to human health and disease. Peptide sequencing by mass spectrometry is important to the proteomics movement. Unfortunately, sequencing of many peptides and proteins, such as those with residues containing acidic and neutral side chains, can be difficult. Acidic side chains undergo facile deprotonation that make analysis challenging and can hinder formation of positive mode ions. New methods of sample preparation and dissociation techniques are needed to increase sequence information. This dissertation includes an extensive study of the effects on electron transfer dissociation (ETD) mass spectrometry of biological and model acidic non-phosphorylated and phosphorylated peptides adducted to trivalent lanthanide metal cations. Mass spectra contained herein provide abundant information about the primary structure of peptides. The ETD process requires multiply positively charged ions that can be difficult to obtain with acidic peptides. This work demonstrates that addition of trivalent lanthanide metal cations allows highly acidic peptides to be analyzed by ETD by forming multiply positively charged precursor ions by electrospray ionization (ESI). Using trivalent lanthanide cations as ionizing agents yields extensive sequence information for highly acidic peptides including definitive identification of phosphorylation sites. Peptides forming [M + Met + H]4+ and [M + Met]3+ generate full sequence coverage in many cases, but [M + Pr – H]2+ generates less sequence coverage. (Met is the trivalent metal cation.) The spectra contain primarily a mix of non-metallated and metal adducted c- and z- ions. All metallated product ions incorporate at least two acidic sites or a highly acidic phosphoresidue, which strongly suggests that the trivalent metal cation coordinates with residues that contain highly acidic side chains. All trivalent lanthanide cations are suitable for sequencing highly acidic peptides except europium and radioactive promethium. ETD spectra contain high signal-to-noise ratios making identification of product ions straightforward. Sequence coverage generally improves with increasing peptide chain length. Trivalent chromium enhances protonation of neutral peptides, which is important to ETD analysis. ESI conditions, particularly drying and nebulizing gas pressures are critical to formation of [M + 2H]2+ by neutral peptides.