Department of Kinesiology
Permanent URI for this community
Browse
Browsing Department of Kinesiology by Subject "ACTIVATION"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Blood Flow Restriction at High Resistance Loads Increases the Rate of Muscular Fatigue, but Does Not Increase Plasma Markers of Myotrauma or Inflammation(Lippincott Williams & Wilkins, 2020) Winchester, Lee J.; Morris, Cody E.; Badinger, Joseph; Wiczynski, Teresa L.; VanWye, William R.; University of Alabama Tuscaloosa; University of Alabama Birmingham; Western Kentucky UniversityWinchester, LJ, Morris, CE, Badinger, J, Wiczynski, TL, and VanWye, WR. Blood flow restriction at high resistance loads increases the rate of muscular fatigue, but does not increase plasma markers of myotrauma or inflammation.J Strength Cond Res34(9): 2419-2426, 2020-High-load resistance training and blood flow restriction (BFR) training at low loads both promote protein synthesis and growth through different cell signaling mechanisms. Therefore, co-activation of these pathways could result in a synergistic effect for additional growth enhancement. The purpose of this study was to evaluate how BFR effects performance and physiological responses after an acute bout of high-load barbell squat training. Twelve resistance-trained, college-aged men and women performed 5 sets of barbell squats at 75% of 1 repetition maximum until failure under traditional (TRAD; control) or intermittent BFR conditions. Perceived limb pain and number of repetitions performed were recorded after each set. Blood samples were collected at baseline and 1-hour postexercise after each trial for analysis of myoglobin and interleukin-6 (IL-6). An alpha level ofp< 0.05 was used to determine significance. Blood flow restriction trial performance significantly declined at set 3 and was lower than performance during control, whereas control performance did not decrease until set 5. Perceived limb pain was statistically increased with BFR use for the whole trial and was significantly higher with BFR during set 3 than observed during TRAD. Plasma myoglobin and IL-6 were significantly increased after both trials when compared with baseline, but were not significantly different between trials. Intermittent BFR use during high-load barbell squats increases the rate of muscular fatigue and perceived limb pain, but does not increase muscular damage or inflammatory response. Data obtained from this study can be used by fitness professionals as a means of potentially enhancing the rate of muscular hypertrophy.Item Electromyographical Comparison of a Traditional, Suspension Device, and Towel Pull-Up(De Gruyter, 2017) Snarr, Ronald L.; Hallmark, Ashleigh V.; Casey, Jason C.; Esco, Michael R.; Georgia Southern University; University of Alabama TuscaloosaStrengthening muscles of the back may have various implications for improving functions of daily living, aiding in the transfer of power in throwing, and assist in injury prevention of the shoulder complex. While several versions of the pull-up exist, there is currently no literature comparing their differences. The purpose of this investigation was to compare the electromyographical activity of the latissimus dorsi, posterior deltoid, middle trapezius, and biceps brachii while performing three variations of the pull-up. Resistance-trained men and women (n = 15, age = 24.87 +/- 6.52 years) participated in this study by performing traditional pull-ups, suspension device pull-ups, and towel pull-ups in a randomized fashion. Each pull-up was performed for three repetitions with a 1.5 biacromial grip-width for each participant. Normalized (%MVC) electromyographical values were recorded for each muscle group during each pull-up variation. No significant differences existed within the latissimus dorsi, biceps brachii or posterior deltoid between any of the exercises. For the middle trapezius, towel pull-ups provided significantly lower muscle activity than the traditional pull-up, while no differences between suspension pull-ups and the other variations occurred. In conclusion, only one muscular difference existed between the exercise variations and all versions examined provided electromyographical values, determined by current literature, to invoke a sufficient stimulus to promote increases in muscle strength and hypertrophy. Although further research is needed, practitioners can be confident when programming any of the movement variations examined when attempting to elicit adaptations of muscular strength and hypertrophy.