Alabama Transportation Institute
Permanent URI for this community
Browse
Browsing Alabama Transportation Institute by Subject "Advanced combustion"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Catalytic partial oxidation reformation of diesel, gasoline, and natural gas for use in low temperature combustion engines(Elsevier, 2019) Hariharan, Deivanayagam; Yang, Ruinan; Zhou, Yingcong; Gainey, Brian; Mamalis, Sotirios; Smith, Robyn E.; Lugo-Pimentel, Michael A.; Castaldi, Marco J.; Gill, Rajinder; Davis, Andrew; Modroukas, Dean; Lawler, Benjamin; State University of New York (SUNY) System; State University of New York (SUNY) Stony Brook; City University of New York (CUNY) System; City College of New York (CUNY); University of Alabama TuscaloosaOnboard reforming has relevance to both conventional and advanced combustion concepts. Most recently, onboard reforming has been proposed to enable "Single-Fuel RCCI" combustion and therefore, this paper explores catalytic partial oxidation reforming of three potential transportation-relevant fuels: gasoline, diesel, and natural gas. Reformation is performed at two pressure levels (between 15 and 60 psig) for each parent fuel for equivalence ratios ranging from 3.7 to 7.6 and the gaseous reformate mixtures are characterized with gas chromatography. The percentage of diesel oxidized during reformation is similar across all of the equivalence ratios. However, the percentage of gasoline and natural gas oxidized during reformation decreased with increasing equivalence ratio. The energy released during the reformation process is also calculated and presented for each gaseous reformate fuel. The lower heating value of every reformate fuel is lower than 20% of their respective parent fuel, due to the high concentration of inert gases (mostly nitrogen) in the reformate fuel mixtures. Two reformed fuels for each parent fuel were then selected to study their autoignition characteristics using HCCI combustion on a Co-operative Fuel Research (CFR) engine. The equivalence ratio is maintained at 0.31 and the combustion phasing was held constant by varying the intake temperature. Although the equivalence ratio is constant, the input energy from the different reformate fuels is not constant due to the component concentrations in the fuel. The gaseous reformate fuels are then compared to gasoline, natural gas, and the primary reference fuels in HCCI to determine an effective Primary Reference Fuel (PRF) number or effective octane rating for each gaseous reformate fuel. The effective octane rating for the gaseous reformate fuels fell slightly above the PRF number scale at an effective octane number of -110.Item A comprehensive experimental investigation of low-temperature combustion with thick thermal barrier coatings(Pergamon, 2021) Yan, Ziming; Gainey, Brian; Gohn, James; Hariharan, Deivanayagam; Saputo, John; Schmidt, Carl; Caliari, Felipe; Sampath, Sanjay; Lawler, Benjamin; Clemson University; University of Alabama Tuscaloosa; State University of New York (SUNY) System; State University of New York (SUNY) Stony BrookThick thermal barrier coatings (TBCs) have a significant potential to increase thermal efficiency by reducing heat transfer losses. However, in conventional combustion modes, the drawbacks associated with charge heating and higher propensity to knock have outweighed the efficiency benefits. Since the advanced low-temperature combustion (LTC) concepts are fundamentally different from the conventional combustion modes, these penalties do not exist in most of LTCs. The current experimental study shows the feasibility and benefits of thick TBCs with advanced LTC enabled by two different fuels: conventional gasoline and wet ethanol 80 (WE80, i.e., 80% ethanol and 20% water by mass). A total of five pistons were tested, including two metal baselines and three TBCcoated pistons with different thicknesses or surface finishes. A load sweep was conducted with each fuel on each piston within the same constraints. The thick TBCs extends the low load limit by about 15% for both gasoline and WE80 cases. A deterioration of the high load limit was not observed, which implies that the charge heating penalty does not occur in LTCs. The combustion efficiency increased for the thicker TBC by up to 2% points, and the fuel conversion efficiency was increased by up to 4.3%. The gasoline cases experience the largest benefits at low load, while the wet ethanol experiences the largest benefits at mid-to-high load. The intake temperature requirement is successfully reduced by 10-15 K. It is also observed that the dense sealing layer results in a significant improvement to UHC emissions. All of the coated pistons survived the 10-20 h of engine operation with no visual failure. (c) 2021 Elsevier Ltd. All rights reserved.Item Single-fuel reactivity controlled compression ignition through catalytic partial oxidation reformation of diesel fuel(Elsevier, 2019) Hariharan, Deivanayagam; Boldaji, Mozhgan Rahimi; Yan, Ziming; Mamalis, Sotirios; Lawler, Benjamin; State University of New York (SUNY) System; State University of New York (SUNY) Stony Brook; Clemson University; University of Alabama TuscaloosaA single-fuel RCCI concept has been proposed to avoid the need for a secondary fuel system required for conventional RCCI by generating the secondary fuel from the primary fuel through catalytic partial oxidation (CPOX) reformation. In conventional RCCI, gasoline or natural gas can be used as the low-reactivity fuel, and diesel can be used as the high-reactivity fuel. In this study, two reformate mixtures generated by reforming diesel fuel at different operating conditions were used as the low-reactivity fuel, with the parent diesel as the high reactivity fuel. The combustion characteristics of reformate-diesel RCCI were compared with the conventional RCCI. A CFD model was also developed and validated against the experimental results. The model was then used to validate a necessary approximation of the reformate mixture's species concentrations. Compared to conventional RCCI fuel pairs, reformate-diesel RCCI shows marginally better thermal efficiency, approximately 10% better THC emissions, approximately 50% lower NOx emissions, and good controllability. Because the reformate mixture has a high concentration of diluents it displaces a large fraction of intake air and acts similarly to EGR. The combustion behavior of reformate-diesel RCCI is in between that of gasoline-diesel and natural gas-diesel conventional RCCI. From the results, it can be concluded that reformate-diesel RCCI is not overly sensitive to the reformation process itself and the exact species concentrations in the reformate mixture. A small change in the start of injection of diesel, blend ratio, and EGR fraction can be used to compensate for reformate mixture concentration differences.