Department of Aerospace Engineering and Mechanics
Permanent URI for this community
Browse
Browsing Department of Aerospace Engineering and Mechanics by Subject "Aerospace engineering"
Now showing 1 - 20 of 82
Results Per Page
Sort Options
Item Adaptive highly flexible multifunctional wings for active and passive control and energy harvesting with piezoelectric materials(University of Alabama Libraries, 2017) Tsushima, Natsuki; Su, Weihua; University of Alabama TuscaloosaThe purpose of this dissertation is to develop an analytical framework to analyze highly flexible multifunctional wings with integral active and passive control and energy harvesting using piezoelectric transduction. Such multifunctional wings can be designed to enhance aircraft flight performance, especially to support long-endurance flights and to be adaptive to various flight conditions. This work also demonstrates the feasibility of the concept of piezoelectric multifunctional wings for the concurrent active control and energy harvesting to improve the aeroelastic performance of high-altitude long-endurance unmanned air vehicles. Functions of flutter suppression, gust alleviation, energy generation, and energy storage are realized for the performance improvement. The multifunctional wings utilize active and passive piezoelectric effects for the efficient adaptive control and energy harvesting. An energy storage with thin-film lithium-ion battery cells is designed for harvested energy accumulation. Piezoelectric effects are included in a strain-based geometrically nonlinear beam formulation for the numerical studies. The resulting structural dynamic equations are coupled with a finite-state unsteady aerodynamic formulation, allowing for piezoelectric energy harvesting and active actuation with the nonlinear aeroelastic system. This development helps to provide an integral electro-aeroelastic solution of concurrent active piezoelectric control and energy harvesting for wing vibrations, with the consideration of the geometrical nonlinear effects of slender multifunctional wings. A multifunctional structure for active actuation is designed by introducing anisotropic piezoelectric laminates. Linear quadratic regulator and linear quadratic Gaussian controllers are implemented for the active control of wing vibrations including post-flutter limit-cycle oscillations and gust perturbation. An adaptive control algorithm for gust perturbation is then developed. In this research, the active piezoelectric actuation is applied as the primary approach for flutter suppression, with energy harvesting, as a secondary passive approach, concurrently working to provide an additional damping effect on the wing vibration. The multifunctional wing also generates extra energy from residual wing vibration. This research presents a comprehensive approach for an effective flutter suppression and gust alleviation of highly flexible piezoelectric wings, while allowing to harvest the residual vibration energy. Numerical results with the multifunctional wing concept show the potential to improve the aircraft performance from both aeroelastic stability and energy consumption aspects.Item Additive manufacturing of two phase thermoplastic composites: a process model, microstructure and performance study(University of Alabama Libraries, 2019) Papon, Md Easir Arafat; Haque, Anwarul; University of Alabama TuscaloosaFused filament fabrication (FFF) based additive manufacturing (AM) of polymers and composites is a growing interest in processing tailorable parts with functional requirements like structural integrity, lightweight, high-temperature capability, etc. In general, the parts manufactured by FFF show large void contents, weak bonding, and inferior structural performance in comparison to those produced by conventional methods. The present research focused on overcoming the shortcomings of FFF through process modeling, microstructure study, and performance analysis. An experimental and numerical study has been conducted on the FFF of carbon fiber reinforced polylactic acid (CF/PLA) composites. A computational fluid dynamics (CFD) based numerical model was developed to simulate the temperature distribution and melt flow characteristics of highly viscous polymer (single and two-phase composites) using non-Newtonian computational model. Free space bead flow geometry and bead spreading architecture on the platform were also simulated with various nozzle geometries. The effects of the circular, square, and star-shaped geometries on bead cross-sectional shapes were studied both numerically and experimentally to achieve less void contents and improve the bead/layer bonding. Different dominant FFF process variables, both in filament extrusion and part production steps were studied, and a multi-level experimentation scheme was developed to study the bead-level to part-level properties. Physics-based surrogate models were developed, and stochastic uncertainty analysis was carried out on the manufacturing process to build up an optimum process-structure relationship. Another criticality of fiber-matrix interfacial bonding in the FFF-composites was addressed by introducing proper surface treatment to the fibers and post-manufacturing thermal treatment. The numerical model showed good promise in tailoring the bead geometry with the square and star-exit nozzle that potentially enhanced the bead to bead bonding. Extensive experimental studies were conducted to characterize strength, stiffness, fracture toughness, and void contents with various printed layer orientations and fiber concentrations of the FFF coupons. An acid-based functionalization of fibers, printing using square-nozzle, and enhanced crystallinity through controlled annealing were found to improve the fiber-matrix and inter-bead bonding, reduce the inter and intra-void and improve mechanical performances. The optimization and experimental data-driven stochastic modeling of the process parameters paved the way for producing parts with greater confidence at reduced experimental affords. The investigations and strategies developed in this dissertation will help to establish a high-quality and efficient process framework to improve the performance of additively manufactured two-phase composites. The fundamental understating and knowledge exercised in this dissertation can potentially be used for any polymer-based AM processes beyond the FFF since the fundamental challenges of controlling the voids and bonding are unavoidable.Item Aerodynamic comparisons of membrane wings with cambered and flat frames at low reynolds number(University of Alabama Libraries, 2016) Wrist, Andrew Harley; Hubner, James Paul; University of Alabama TuscaloosaThe limited size of micro air vehicles (MAVs) requires small power sources, leading to a need for high aerodynamic efficiency. Flexible membrane wings at the MAV scale can experience improved lift/drag ratios, delays in stall, and decreased time-averaged flow separation when compared to rigid wings. This research thesis examines the effect of frame camber on the aerodynamic characteristics of membrane wings. The frames for the wings were designed in SolidWorks and constructed using an Objet30 Pro 3D printer. The membranes are composed of silicone rubber. Tests were conducted in The University of Alabama’s low-speed wind tunnel in 135 Hardaway Hall in low Reynolds number flow (Re ~ 50,000). Aerodynamic force and moment measurements were acquired at angles-of-attack varying from -4 to 24°. The results were used to determine whether cambered frames provide membrane wings with aerodynamic advantages when compared to those with flat frames. Additionally, a digital image correlation (DIC) camera system was used to acquire time-averaged shapes for the membrane wings during wind tunnel tests. The wings were mounted vertically at angles-of-attack of 6° and 18° to represent the regions of maximum efficiency and approaching stall, respectively. An in-house MATLAB program was developed to average the deflection plots from the images and produce time-averaged shapes. Lifting-line theory was applied to the time-averaged shapes to calculate theoretical lift and induced drag coefficients. The experimental set-up, results, and conclusions are discussed.Item Analysis of beveled semi-elliptical surface cracks in friction stir plug welded plates made of Al 2195 alloy(University of Alabama Libraries, 2011) Vadakke Veetil, Rahul; Barkey, Mark E.; University of Alabama TuscaloosaFriction Stir Welding (FSW) is a solid state joining process primarily used for Al alloys. Friction Stir Plug Welding (FPW) is a process in which a tapered shaped plug is friction stir welded into the hole that was left in the welded part when the initial FSW tool was removed. A rectangular plate made of Al 2195 alloy with a friction welded plug and containing a semi-elliptical surface crack was analyzed using the help of the software `FEA Crack'. Three different crack depths of deep cracks as well as shallow cracks were considered in identical plates of a quarter inch thickness. The depths were 0.08, 0.13 and 0.18 inches for deep cracks and 0.008, 0.013 and 0.018 inches for shallow cracks. A uniaxial tensile load of 1 psi was applied on one end surface with the opposite surface being fixed. For each depth, four different crack arc lengths were considered which were of 15, 30, 60 and 90 degrees. For each of these cases, the crack tube containing the crack was rotated around the plug having an inner bevel, in steps of 10 degree starting from the base position to the 90 degree (vertical) position with an additional case of 45 degree rotation in between. The stress intensity factor K was plotted against the crack front angle. The average and maximum K factor values were also plotted for each of the main crack lengths against the crack rotation angle. The same procedure was employed for shallow cracks. The results were validated using Newman-Raju equations for semi elliptical surface cracks. Non dimensional K factor plots were also made for different cases of both deep and shallow surface cracks. Researchers studying the surface cracks can now get an estimate of the value of stress intensity factor for the crack length, depth of crack and also the angular position of the crack around the plug by interpolating my results.Item Application of direct method transcription for a human-class translunar injection trajectory optimization(University of Alabama Libraries, 2011) Witzberger, Kevin Eric; Zeiler, Thomas A.; University of Alabama TuscaloosaThis thesis presents a new trajectory optimization software package developed in the framework of a low-to-high fidelity three degree-of-freedom (3-DOF)/6-DOF vehicle simulation program named Mission Analysis Simulation Tool in Fortran (MASTIF) and its application to a translunar trajectory optimization problem. The functionality of the developed optimization package is implemented as a new ``mode" in generalized settings to make it applicable for a general trajectory optimization problem. In doing so, a direct optimization method using collocation is employed for solving the problem. Trajectory optimization problems in MASTIF are transcribed to a constrained nonlinear programming (NLP) problem and solved with SNOPT, a commercially available NLP solver. A detailed description of the optimization software developed is provided as well as the transcription specifics for the translunar injection (TLI) problem. This assessment of the final results is formulated via a metric given as the minimization of the TLI main engine burn time, which is equivalent to the maximization of the mass at main engine cutoff (MECO). Key design parameters include the initial values for three orbital angles (right ascension of ascending node, argument of perigee, and true anomaly) and three Euler angles for steering during the main engine burn. To do so, the solution starts by modeling the entire trajectory into three distinct phases. The first two phases are based on a collocation method whereas the third phase appears with a high order Runge-Kutta integration. The next part of assessing the TLI trajectory utilizes MASTIF's vehicle simulation capabilities (the other "mode" within MASTIF). This includes the ability to design and test new and existing guidance, navigation, and control (GN\&C) algorithms. As a demonstration of MASTIF's versatility, results from the trajectory optimization (the open-loop solution) in the form of a set of initial states and specific orbital target parameters at MECO are used in a new preliminary assessment of a variant of the Space Shuttle's flight-proven closed-loop guidance algorithm named Powered Explicit Guidance (PEG). Main engine burn times and the LVLH Euler angles from the open-loop and closed-loop solutions are compared to show approximate agreement and efficacy of MASTIF's two distinct "modes''.Item Application of shark skin flow control techniques to airflow(University of Alabama Libraries, 2017) Morris, Jackson Alexander; Lang, Amy W.; Hubner, James Paul; University of Alabama TuscaloosaDue to millions of years of evolution, sharks have evolved to become quick and efficient ocean apex predators. Shark skin is made up of millions of microscopic scales, or denticles, that are approximately 0.2 mm in size. Scales located on the shark’s body where separation control is paramount (such as behind the gills or the trailing edge of the pectoral fin) are capable of bristling. These scales are hypothesized to act as a flow control mechanism capable of being passively actuated by reversed flow. It is believed that shark scales are strategically sized to interact with the lower 5% of a boundary layer, where reversed flow occurs at the onset of boundary layer separation. Previous research has shown shark skin to be capable of controlling separation in water. This thesis aims to investigate the same passive flow control techniques in air. To investigate this phenomenon, several sets of microflaps were designed and manufactured with a 3D printer. The microflaps were designed in both 2D (rectangular) and 3D (mirroring shark scale geometry) variants. These microflaps were placed in a low-speed wind tunnel in the lower 5% of the boundary layer. Solid fences and a flat plate diffuser with suction were placed in the tunnel to create different separated flow regions. A hot film probe was used to measure velocity magnitude in the streamwise plane of the separated regions. The results showed that low-speed airflow is capable of bristling objects in the boundary layer. When placed in a region of reverse flow, the microflaps were passively actuated. Microflaps fluctuated between bristled and flat states in reverse flow regions located close to the reattachment zone.Item Atomistic modeling and structure-property relationship of topologically accurate complex nanotube junction architectures(University of Alabama Libraries, 2020-08) Nakarmi, Sushan; Barkey, Mark; Unnikrishnan, Vinu; University of Alabama TuscaloosaCarbon nanotubes have remarkable material properties and are ideal for different space applications including thermal management devices, light-weight mechanical shock absorbers, and fiber-reinforced composites. Nanotube junctions, which are the interconnections of carbon nanotubes, have properties different from the pristine structures and are promising materials for constructing unit blocks with excellent material properties. However, widespread application of the junctions and nanostructures is limited due to the lack of understanding of their mechanical, thermal, and electronic properties. The overall objective of the current research is to provide a computational methodology to construct atomistic models of nanostructures and study their thermal and mechanical properties under different operating conditions. In the first part of the research, the topologically accurate atomistic models of the junctions are created using a novel CAD-based remeshing and optimization strategies. The most energetically stable configurations are chosen to build 3D architectures, thus, providing an economical way to construct complex and larger dimension nanostructures. The created macro-structures can be used directly in the atomistic simulations to study their structure-property relationships. In this dissertation, the thermal and mechanical characterization of pristine nanotubes and complex nanotube multiterminal junctions have been studied using molecular dynamics (MD) simulation. At the nanoscale, the thermal conductivity of nanotube is found to be dependent on size, strain, temperature, and defects. The effects of each of these parameters on the thermal transport of nanostructures have been determined using MD. This is followed by the comparative study of the phonon density of states and phonon dispersion relations of different configurations. The study provides guidelines for creating nanotube heat transfer devices with desired thermal specifications. In addition to being highly conductive, nanotubes and junctions have very high strength and modulus. Although an extensive amount of research is available with the characterization of the pristine nanotubes, there lacks a proper understanding of the mechanical characteristics of the complex structures (multi-terminal junctions and micro-blocks). With the atomistic models of these structures created, the tensile and compressive strengths of such complex architectures have been presented. These computational models will provide the much needed next step for the realization of nanotube junctions for the industrial applications.Item Borescopic Laser Doppler Velocimetry probe(University of Alabama Libraries, 2013) O'Brien, Kory Thomas; Olcmen, Semih M.; University of Alabama TuscaloosaA miniature fiber-optic, single-velocity-component Laser Doppler Velocimetry (LDV) probe for measurement in cramped spaces, where access is very limited, has been designed, constructed, and tested. The probe design allows the main probe dimensions to be small (7mm in diameter). In addition, the proposed back-scatter collection scheme allows the main section to be as long as needed to access remote locations. The laser beams are first collimated by passing them through two separate collimating lenses. The collimated light then passes through 1 mm holes machined into a right angle prism-mirror and are focused to form the measurement probe volume using the focusing lens placed at the end of the probe extension tube. The light scattered by the particles in the flow is collected back by the focusing lens and is collimated. The collimated light then reflects off the right-angle mirror by 90 degrees, passes through the receiving lens, and is focused to the receiving fiber terminator. The receiving fiber-optic cable transmits the collected light to the photo-multiplier tube which then converts the signal into an electrical signal for further processing of the data. The probe working principle was proven in two types of jet flows.Item Carbon nanotube sheet scrolled fiber composite for enhanced interfacial mechanical properties(University of Alabama Libraries, 2017) Kokkada Ravindranath, Pruthul; Roy, Samit; University of Alabama TuscaloosaThe high tensile strength of Polymer Matrix Composites (PMC) is derived from the high tensile strength of the embedded carbon fibers. However, their compressive strength is significantly lower than their tensile strength, as they tend to fail through micro-buckling, under compressive loading. Fiber misalignment and the presence of voids created during the manufacturing processes, add to the further reduction in the compressive strength of the composites. Hence, there is more scope for improvement. Since, the matrix is primarily responsible for the shear load transfer and dictating the critical buckling load of the fibers by constraining the fibers from buckling, to improve the interfacial mechanical properties of the composite, it is important to modify the polymer matrix, fibers and/or the interface. In this dissertation, a novel approach to enhance the polymer matrix-fiber interface region has been discussed. This approach involves spiral wrapping carbon nanotube (CNT) sheet around individual carbon fiber or fiber tow, at room temperature at a prescribed wrapping angle (bias angle), and then embed the scrolled fiber in a resin matrix. The polymer infiltrates into the nanopores of the multilayer CNT sheet to form CNT/polymer nanocomposite surrounding fiber, and due to the mechanical interlocking, provides reinforcement to the interface region between fiber and polymer matrix. This method of nano-fabrication has the potential to improve the mechanical properties of the fiber-matrix interphase, without degrading the fiber properties. The effect of introducing Multi-Walled Carbon Nanotubes (MWNT) in the polymer matrix was studied by analyzing the atomistic model of the epoxy (EPON-862) and the embedded MWNTs. A multi-scale method was utilized by using molecular dynamics (MD) simulations on the nanoscale model of the epoxy with and without the MWNTs to calculate compressive strength of the composite and predict the enhancement in the composite material. The influence of the bias/over wrapping angle of the MWNT sheets on the carbon fiber was also studied. The predicted compressive strength from the MD results and the multiscale approach for baseline Epoxy case was shown to be in good relation with the experimental results for Epon-862. On adding MWNTs to the epoxy system, a significant improvement in the compressive strength of the PMC was observed. Further, the effect of bias angle of MWNT wrapped over carbon fiber was compared for 0, 45 and 90. This is further verified by making use of the Halpin-Tsai.Item Characterization and modeling of the effect of environmental degradation on flexural strength of carbon/epoxy composites(University of Alabama Libraries, 2010) Chawla, Sneha Anil; Roy, Samit; University of Alabama TuscaloosaA mechanism-based modeling methodology has developed for prediction of long-term durability of composites for emerging facilities in different climatic zones. The objective of the research was to develop a predictive tool using the Arrhenius principles adapted to the TTS (Time Temperature Superposition) to measure degradation of carbon-fiber/epoxy composite under hygrothermal exposure and applied tensile stress. The hygrothermal conditions capture the synergistic effects of field exposure and extreme temperatures, viz., hot/dry, hot/wet, cold/dry, and cold/wet. Short term tests were performed to determine the flexural strength of environmentally aged composite specimens in accordance with ASTM D2344-84 and ASTM D7264 respectively. Carbon/epoxy specimens of [02/902]2s configuration were manufactured for flexure tests using Vacuum Assisted Resin Transfer Molding (VARTM). A unique strain fixture was designed to apply constant strain on the specimens during ageing and applied a simple methodology to eliminate excessive creep in the specimens. A two-dimensional cohesive layer constitutive model with a cubic traction-separation law has being developed in order to predict the life of the composite under hygrothermal conditions. The model simulated the test conditions and predicted the progressive failure mechanism of the specimen as observed in the tests, under various loading conditions. The model also incorporated synergistic interactions between temperature, moisture and stress effects and predicted degradation in strength and stiffness as a function of different ageing conditions and ageing times. Model predictions have been benchmarked using test data.Item Computational analysis of diffuser performance for the Subsonic Aerodynamic Research Laboratory wind tunnel(University of Alabama Libraries, 2012) King, Christopher David; Olcmen, Semih M.; University of Alabama TuscaloosaThe Air Force has expressed interest in improving the efficiency of the Subsonic Aerodynamic Research Laboratory (SARL) wind tunnel. In a previous analysis of losses throughout the tunnel, it was found that approximately thirty percent of pressure losses through the tunnel occurred at the exit of the tunnel (Britcher, 2011). The use of alternative diffuser geometries in reducing pressure losses at the exit of the tunnel and the computation of their efficiency improvement with respect to the original tunnel geometry and with respect to each other for the SARL wind tunnel are the focus of this research. Three different diffuser geometries were evaluated numerically using both the SolidWorks Flow Simulation add-on, and ANSYS FLUENT. For each of these geometries, a scaled down model was manufactured to be used for experimental validation in future work. Both the full size and small scale numerical models were evaluated with an inlet velocity of sixty meters per second. As the nature of the flow at this point in the wind tunnel is not known, both a uniform and fully developed turbulent flow profiles were evaluated for each design, both for the small scale models and the full size models, to determine pressure losses with respect to the varying flow types entering the diffusers. This research seeks to determine the effects of these different geometries on the flow downstream of the exit, and the possible energy savings associated with each design. In addition, it seeks to compare the numerical results obtained from both SolidWorks Flow Simulation and ANSYS FLUENT.Item Concurrently coupled multiscale modeling of polymer nanocomposites(University of Alabama Libraries, 2016) Li, Shibo; Roy, Samit; University of Alabama TuscaloosaEmbedded statistical coupling method (ESCM) was originally developed to provide computational efficiency, to decrease coupling complexities, and to avoid the need to discretize the continuum model to atomic scale resolution in concurrent multiscale modeling. ESCM scheme is relatively easy to implement within conventional FEM code and has been tested in standard solid lattice structures. However, this method encounters difficulties when being implemented for amorphous materials like polymers, due to the fact that they lack specific ordered lattice structure and atoms may not be covalently bonded with each other, which are the requirements of common coupling schemes. Therefore, a new approach needs to be developed to resolve this problem. In this paper, details of a modified ESCM approach for atomistic-continuum coupling developed to perform simulations of crack growth in polymers is presented. The presence of the continuum domain surrounding the MD region allows for the application of far-field loading, and prevents stress wave reflections from the external boundary impinging back on the crack tip. In our approach, Material Point Method (MPM), which is a meshless particle-in-cell method based on Arbitrary Euler-Lagrange (ALE) scheme and has been proven to have good performance in large deformation problems, is used to model the continuum domain. It is concurrently coupled with molecular dynamics (MD), a widely used method in atomistic simulations, using a so-called handshake region. Anchor points, the equilibrium positions of the constrained particles, which are designed to transmit displacements and forces between nanoscale and macroscale model, are defined in the handshake region. A concurrently coupled MPM-MD simulation of crack propagation inside a polymer is performed to verify this new coupling approach, thereby providing a better understanding of the fracture mechanisms at the nanoscale to predict the macro-scale fracture toughness of polymer system. Results are presented for concurrently coupled crack propagation simulation in a di-functional cross-linked thermoset polymer, EPON 862. The composite laminate open hole tension problem is also studied using concurrent multiscale approach by implementing micromechanics program MAC/GMC in FEA frame.Item Construction of a multi-functional cryogenic propellant tank with cross-linked silica aerogel(University of Alabama Libraries, 2010) Reinheimer, Preston Glenn; Roy, Samit; University of Alabama TuscaloosaAerogels are low-density nanostructured porous materials, whose practical applications have been limited by their poor mechanical properties. Crosslinking the nanoparticle building blocks of silica aerogels with polymeric tethers increases both the modulus and the strength significantly. The polymer coating preserves the mesoporous structure of the silica framework while retaining its low thermal conductivity. The uniqueness of crosslinked silica aerogel has load carrying capabilities in which are determined in tensile, compression and flexural bending tests. Crosslinked silica aerogel testing displays specific compressive strength of 389000 Nm/Kg. Ballistic testing of crosslinked silica aerogel also corroborates its mechanical properties displaying a ballistic limit up to 80 m/s. Its thermal conductivity at 0.041 W/mK supports the use of crosslinked silica aerogel in cryogenic fuel cell applications. Manufacturing practices have been evaluated to obtain an optimal process which reduces time, money and difficulty.Item Control surface hinge moment prediction using computational fluid dynamics(University of Alabama Libraries, 2016) Simpson, Christopher David; O'Neill, Charles R.; University of Alabama TuscaloosaThe following research determines the feasibility of predicting control surface hinge mo- ments using various computational methods. A detailed analysis is conducted using a 2D GA(W)-1 airfoil with a 20% plain flap. Simple hinge moment prediction methods are tested, including empirical Datcom relations and XFOIL. Steady-state and time-accurate turbulent, viscous, Navier-Stokes solutions are computed using Fun3D. Hinge moment coefficients are computed. Mesh construction techniques are discussed. An adjoint-based mesh adaptation case is also evaluated. An NACA 0012 45-degree swept horizontal stabilizer with a 25% ele- vator is also evaluated using Fun3D. Results are compared with experimental wind-tunnel data obtained from references. Finally, the costs of various solution methods are estimated. Results indicate that while a steady-state Navier-Stokes solution can accurately predict control surface hinge moments for small angles of attack and deflection angles, a time- accurate solution is necessary to accurately predict hinge moments in the presence of flow separation. The ability to capture the unsteady vortex shedding behavior present in mod- erate to large control surface deflections is found to be critical to hinge moment prediction accuracy. Adjoint-based mesh adaptation is shown to give hinge moment predictions similar to a globally-refined mesh for a steady-state 2D simulation.Item Damage evolution in composite materials under environmental ageing: a stochastic model with experimental validation(University of Alabama Libraries, 2009) Rahman, Rezwanur; Haque, Anwarul; University of Alabama TuscaloosaThis work emphasizes on predicting probability density function of damages or "number density of damage" in graphite/epoxy polymer matrix composite materials (PMC) under hygrothermal aging condition. A coupled Forward-Backward Stochastic Differential Equation (FBSDE) is proposed as a mathematical model to predict number density of damages. The FBSDE consists of damage nucleation and annihilation rate in terms of Brownian motion. The uncertainty in damage nucleation and annihilation rate is noticed by proposing these two terms as "Brownian motion with drift". In order to verify the proposed model, a quantitative analysis was carried out on a limited number of graphite/epoxy specimens manufactured by VARTM process. The specimens were kept in a hygrothermal condition with room temperature cycling. A rigorous quantitative analysis of damages was done by optical microscopic inspection at different stages of aging period. The damages were classified based on the criteria of their size. Finally, the experimentally collected data for number density of damages were verified by using the proposed FBSDE. A detail parametric study was carried out using FBSDE and best possible predicted data was validated with the experimental observation. A reasonable estimation was observed from the model output.Item Design and analysis of a carbon composite flap for the Cirrus SF50 jet aircraft(University of Alabama Libraries, 2017) Haefner, Andrew; Mulani, Sameer B.; University of Alabama TuscaloosaA new carbon fiber composite flap was designed and analyzed for the Cirrus SF50. This new flap will replace the existing aluminum flap and has the potential to save 5.30 lbs per aircraft. The new flap has the same OML profile as the existing flap and the same hinge locations. This allows the new flap to be either an upgrade option for customers or a supplemental type certificate (STC) option for aircraft in the field. The flap was designed with the same spar location and similar rib locations which allow existing tooling to be used for assembly. The design was analyzed to the static and damage tolerance requirements specified in 14 CFR Part 23. The loads that were utilized for the analysis were calculated using the method in 14 CFR Part 23 Appendix A. The loads are conservative since they consider a load factor of 3.6 instead of 2.2, this was done to make the design and analysis future proof. Since a significant portion of the structure uses minimum gauge layups (2 core 3, 4 ply solid), the weight increase from using the significantly higher load factor is minimal. The flap design and analysis are considered future proof because the loads used will be greater than the required loads if the SF50 were to have either a gross weight increase, a deployment speed increase, a deployment angle increase, or all in combination.Item Design and testing of a high data rate instantaneous laser doppler velocity probe(University of Alabama Libraries, 2015) DeSio, Charles Vincent; Olcmen, Semih M.; University of Alabama TuscaloosaAn Instantaneous Laser Doppler Velocimetry (ILDV) probe is designed, built, and tested. The probe is capable of measuring a single component velocity data at a rate as high as two megahertz. The probe can be employed in high-speed and unsteady flows, especially where high data capture rate is needed such as in shock tubes, high-speed wind tunnels, and pulse detonation engines. However, the probe use is not restricted to only high speed flows. The probe, as designed, requires the flow direction to be known as it cannot discern the flow direction. Light scattered by particles illuminated by a laser beam in the flow is collected via backscattering. This light is transmitted to a breadboard housed in a container designed to insulate the system from sound, light, and vibration. The transmitted light is collimated and passed through a Michelson interferometer. Doppler frequency information contained in the beam is converted to light intensity variation using polarization optics. Two photomultiplier tubes are used to detect the light intensity variations. The output of the PM tubes are acquired using a high-speed data acquisition board, and analyzed in a PC to determine the flow velocity.Item Design for a low-cost k-band communication satellite constellation(University of Alabama Libraries, 2020-12) Strickland, Peyton Daniel; Olcmen, Semih M.; University of Alabama TuscaloosaThe feasibility of using a low-cost K-band communication satellite constellation in low-Earth orbit to provide continuous global coverage to ground terminal restricted aerospace vehicles was investigated. A phased array K-band transceiver pointing nadir, steerable ±45° in azimuth and elevation, and laser communication units for satellite-to-satellite cross link capability, were assumed for the payload. The figure of merit was the average percent coverage of the entire surface of the globe and the space surrounding the globe, up to 1000 km, with a goal of achieving 100% coverage, continuously. The results indicate that continuous global coverage is not feasible with a heritage phased array K-band transceiver with a range of 2000 km and 72 satellites; however, a hypothetical phased array K-band transceiver with a range of 2975 km was able to provide continuous global communication. The low-cost goal was not realized. The estimated cost of the constellation with the hypothetical transceiver is $4.861 B due to the large command and data handling and power requirements associated with the K-band transceiver. With the enormous costs associated with this project, despite using commercially available products, further analysis of the proposed satellite constellation is not recommended.Item Design of a dual-expander aerospike nozzle rocket engine(University of Alabama Libraries, 2016) McVay, Eric Stephen; Branam, Richard D.; University of Alabama TuscaloosaThe University of Alabama’s Aerospace Engineering and Mechanics Department is developing a computational dual-expander aerospike nozzle (DEAN) upper stage rocket engine to demonstrate the engine’s performance capabilities and to establish a model by which the DEAN can be built. This research expands the base model developed by the Air Force Institute of Technology to more accurately represent the physics involved in both the fluid flow and geometrical properties of the engine. The DEAN engine was modeled using NASA’s Numerical Propulsion System Simulation (NPSS) and Chemical Equilibrium with Applications (CEA) software. The methodology implemented in this research was validated by modeling the RL-10A-3-3A upper stage engine in NPSS and comparing resulting outputs with NASA’s ROCket Engine Transient Simulator (ROCETS) analysis. The DEAN uses liquid oxygen and liquid hydrogen as its propellant and is being designed to produce a thrust of 30,000 [lbf] and a specific impulse of at least 465.5 [s], at an oxidizer-to-fuel ratio of 5.88, while also remaining within the size envelope of the RL-10B-2 upper stage engine. The performance and size objectives were established to meet the National Aeronautics and Space Administration’s (NASA) Advanced Upper Stage Engine Program (AUSEP) need for an upper stage rocket engine to replace the aging RL-10 series engines that have been in production since the 1960s. Results indicate that optimal performance for the feasible solution space examined in this research occurs at an expansion ratio of 30, a throat area of 23 [in2], and a characteristic length, L*, of 90 [in]. The optimal DEAN design point was shown to achieve a thrust of more than 5,000 [lbf] greater than the RL-10B-2, a Isp of 1.8 [s] greater, and a significantly reduced size envelope.Item Development and application of luminescent coatings for the measurement of pressure and strain(University of Alabama Libraries, 2019) Chism, Kyle; Hubner, James P.; University of Alabama TuscaloosaThe development of improved imaging devices has continued to expand the application of more accurate and robust full-field optical measurement techniques in the areas of mechanics and aerodynamics. Two such full-field techniques are PEC and PSP. For PEC measurements, the newer technology of micro-polarizer lens reduces the steps necessary to extract polarization data, hence allowing for faster and dynamic measurements. Similarly, improvements in camera sensors and high-powered lamps have furthered the capabilities of PSPs, particularly Fast-PSP. A method using dynamic PEC measurements in conjunction with PSP capabilities would be applicable to many fluid-structure interaction testing scenarios by quantifying the relation between changes in pressure field to changes in structural loading. The feasibility of this combined measurement technique, or PSC, is explored including developing bench-top apparatus to measure isolated PEC and PSP response as well as quantifying the capabilities and limitations of the combined full-field coating. Both PEC and PSP were successfully tested. Initial tests of PSC show both pressure and strain response under light-limited conditions, although further experimentation with coating combinations needs to be completed before dynamic measurements are explored and refined.