Browsing by Author "Polyakov, Nikolay E."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Carotenoids: Importance in Daily Life-Insight Gained from EPR and ENDOR(Springer, 2021) Focsan, A. Ligia; Polyakov, Nikolay E.; Kispert, Lowell D.; Valdosta State University; Voevodsky Institute of Chemical Kinetics & Combustion SB RAS; Institute of Solid State Chemistry & Mechanochemistry, Siberian Branch of the Russian Academy of Sciences; University of Alabama TuscaloosaCarotenoids are indispensable molecules for life. They are present everywhere in plants, algae, bacteria whom they protect against free radicals and oxidative stress. Through the consumption of fruits and vegetables and some carotenoid-containing fish, they are introduced into the human body and, similarly, protect it. There are numerous health benefits associated with the consumption of carotenoids. Carotenoids are antioxidants but at the same time they are prone to oxidation themselves. Electron loss from the carotenoid forms a radical cation. Furthermore, proton loss from a radical cation forms a neutral radical. In this mini-review, we discuss carotenoid radicals studied in our groups by various physicochemical methods, namely the radical cations formed by electron transfer and neutral radicals formed by proton loss from the radical cations. They contain many similar hyperfine couplings due to interactions between the electron spin and numerous protons in the carotenoid. Different EPR and ENDOR methods in combination with DFT calculations have been used to distinguish the two independent carotenoid radical species. DFT predicted larger coupling constants for the neutral radical compared to the radical cation. Previously, INDO calculations miss assigned the large couplings to the radical cation. EPR and ENDOR have aided in elucidating the physisorb, electron and proton transfer processes that occur when carotenoids are adsorbed on solid artificial matrices, and predicted similar reactions in aqueous solution or in plants. After years of study of the physicochemical properties of carotenoid radicals, the different published results start to merge together for a better understanding of carotenoid radical species and their implication in biological systems. Up until 2008, the radical chemistry in artificial systems was elucidated but the correlation between quenching ability and neutral radical formation was an inspiration to look for these radical species in vivo. In addition, the EPR spin-trapping technique has been applied to study inclusion complexes of carotenoids with different delivery systems.Item The Endless World of Carotenoids-Structural, Chemical and Biological Aspects of Some Rare Carotenoids(MDPI, 2023) Polyakov, Nikolay E.; Focsan, A. Ligia; Gao, Yunlong; Kispert, Lowell D.; Voevodsky Institute of Chemical Kinetics & Combustion SB RAS; Valdosta State University; Nanjing Agricultural University; University of Alabama TuscaloosaCarotenoids are a large and diverse group of compounds that have been shown to have a wide range of potential health benefits. While some carotenoids have been extensively studied, many others have not received as much attention. Studying the physicochemical properties of carotenoids using electron paramagnetic resonance (EPR) and density functional theory (DFT) helped us understand their chemical structure and how they interact with other molecules in different environments. Ultimately, this can provide insights into their potential biological activity and how they might be used to promote health. In particular, some rare carotenoids, such as sioxanthin, siphonaxanthin and crocin, that are described here contain more functional groups than the conventional carotenoids, or have similar groups but with some situated outside of the rings, such as sapronaxanthin, myxol, deinoxanthin and sarcinaxanthin. By careful design or self-assembly, these rare carotenoids can form multiple H-bonds and coordination bonds in host molecules. The stability, oxidation potentials and antioxidant activity of the carotenoids can be improved in host molecules, and the photo-oxidation efficiency of the carotenoids can also be controlled. The photostability of the carotenoids can be increased if the carotenoids are embedded in a nonpolar environment when no bonds are formed. In addition, the application of nanosized supramolecular systems for carotenoid delivery can improve the stability and biological activity of rare carotenoids.Item Photo Protection of Haematococcus pluvialis Algae by Astaxanthin: Unique Properties of Astaxanthin Deduced by EPR, Optical and Electrochemical Studies(MDPI, 2017) Focsan, A. Ligia; Polyakov, Nikolay E.; Kispert, Lowell D.; Valdosta State University; Voevodsky Institute of Chemical Kinetics & Combustion SB RAS; University of Alabama TuscaloosaThe antioxidant astaxanthin is known to accumulate in Haematococcus pluvialis algae under unfavorable environmental conditions for normal cell growth. The accumulated astaxanthin functions as a protective agent against oxidative stress damage, and tolerance to excessive reactive oxygen species (ROS) is greater in astaxanthin-rich cells. The detailed mechanisms of protection have remained elusive, however, our Electron Paramagnetic Resonance (EPR), optical and electrochemical studies on carotenoids suggest that astaxanthin's efficiency as a protective agent could be related to its ability to form chelate complexes with metals and to be esterified, its inability to aggregate in the ester form, its high oxidation potential and the ability to form proton loss neutral radicals under high illumination in the presence of metal ions. The neutral radical species formed by deprotonation of the radical cations can be very effective quenchers of the excited states of chlorophyll under high irradiation.Item Supramolecular Carotenoid Complexes of Enhanced Solubility and Stability-The Way of Bioavailability Improvement(MDPI, 2019) Focsan, A. Ligia; Polyakov, Nikolay E.; Kispert, Lowell D.; Valdosta State University; Voevodsky Institute of Chemical Kinetics & Combustion SB RAS; Institute of Solid State Chemistry & Mechanochemistry, Siberian Branch of the Russian Academy of Sciences; University of Alabama TuscaloosaCarotenoids are natural dyes and antioxidants widely used in food processing and in therapeutic formulations. However, their practical application is restricted by their high sensitivity to external factors such as heat, light, oxygen, metal ions and processing conditions, as well as by extremely low water solubility. Various approaches have been developed to overcome these problems. In particular, it was demonstrated that application of supramolecular complexes of "host-guest" type with water-soluble nanoparticles allows minimizing the abovementioned disadvantages. From this point of view, nanoencapsulation of carotenoids is an effective strategy to improve their stability during storage and food processing. Also, nanoencapsulation enhances bioavailability of carotenoids via modulating their release kinetics from the delivery system, influencing the solubility and absorption. In the present paper, we present the state of the art of carotenoid nanoencapsulation and summarize the data obtained during last five years on preparation, analysis and reactivity of carotenoids encapsulated into various nanoparticles. The possible mechanisms of carotenoids bioavailability enhancement by multifunctional delivery systems are also discussed.