Browsing by Author "Molazadeh, Vahidreza"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item An Iterative Learning Controller for a Switched Cooperative Allocation Strategy During Sit-to-Stand Tasks with a Hybrid Exoskeleton(IEEE, 2022) Molazadeh, Vahidreza; Zhang, Qiang; Bao, Xuefeng; Sharma, NitinA hybrid exoskeleton that combines functional electrical stimulation (FES) and a powered exoskeleton is an emerging technology for assisting people with mobility disorders. The cooperative use of FES and the exoskeleton allows active muscle contractions through FES while robustifying torque generation to reduce FES-induced muscle fatigue. In this article, a switched distribution of allocation ratios between FES and electric motors in a closed-loop adaptive control design is explored for the first time. The new controller uses an iterative learning neural network (NN)-based control law to compensate for structured and unstructured parametric uncertainties in the hybrid exoskeleton model. A discrete Lyapunov-like stability analysis that uses a common energy function proves asymptotic stability for the switched system with iterative learning update laws. Five human participants, including a person with complete spinal cord injury, performed sit-to-stand tasks with the new controller. The experimental results showed that the synthesized controller, in a few iterations, reduced the root mean square error between desired positions and actual positions of the knee and hip joints by 46.20% and 53.34%, respectively. The sit-to-stand experimental results also show that the proposed NN-based iterative learning control (NNILC) approach can recover the asymptotically trajectory tracking performance despite the switching of allocation levels between FES and electric motor. Compared to a proportional-derivative controller and traditional iterative learning control, the findings showed that the new controller can potentially simplify the clinical implementation of the hybrid exoskeleton with minimal parameters tuning.Item Neural-Network Based Iterative Learning Control of a Hybrid Exoskeleton with an MPC Allocation Strategy(ASME, 2019-10) Molazadeh, Vahidreza; Zhang, Qiang; Bao, Xuefeng; Sharma, NitinIn this paper, a novel neural network based iterative learning controller for a hybrid exoskeleton is presented. The control allocation between functional electrical stimulation and knee electric motors uses a model predictive control strategy. Further to address modeling uncertainties, the controller identifies the system dynamics and input gain matrix with neural networks in an iterative fashion. Virtual constraints are employed so that the system can use a time invariant manifold to determine desired joint angles. Simulation results show that the controller stabilizes the hybrid system for sitting to standing and standing to sitting scenarios.Item Shared Control of a Powered Exoskeleton and Functional Electrical Stimulation Using Iterative Learning(Frontiers, 2021) Molazadeh, Vahidreza; Zhang, Qiang; Bao, Xuefeng; Sharma, NitinA hybrid exoskeleton comprising a powered exoskeleton and functional electrical stimulation (FES) is a promising technology for restoration of standing and walking functions after a neurological injury. Its shared control remains challenging due to the need to optimally distribute joint torques among FES and the powered exoskeleton while compensating for the FES-induced muscle fatigue and ensuring performance despite highly nonlinear and uncertain skeletal muscle behavior. This study develops a bi-level hierarchical control design for shared control of a powered exoskeleton and FES to overcome these challenges. A higher-level neural network–based iterative learning controller (NNILC) is derived to generate torques needed to drive the hybrid system. Then, a low-level model predictive control (MPC)-based allocation strategy optimally distributes the torque contributions between FES and the exoskeleton’s knee motors based on the muscle fatigue and recovery characteristics of a participant’s quadriceps muscles. A Lyapunov-like stability analysis proves global asymptotic tracking of state-dependent desired joint trajectories. The experimental results on four non-disabled participants validate the effectiveness of the proposed NNILC-MPC framework. The root mean square error (RMSE) of the knee joint and the hip joint was reduced by 71.96 and 74.57%, respectively, in the fourth iteration compared to the RMSE in the 1st sit-to-stand iteration.