Browsing by Author "Kerr, Greg"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Estimated Wind River Range (Wyoming, USA) Glacier Melt Water Contributions to Agriculture(MDPI, 2009-10-28) Cheesbrough, Kyle; Edmunds, Jake; Tootle, Glenn; Kerr, Greg; Pochop, Larry; University of Tennessee System; University of Tennessee Knoxville; University of Wyoming; University of Alabama TuscaloosaIn 2008, Wyoming was ranked 8th in barley production and 20th in hay production in the United States and these crops support Wyoming's $800 million cattle industry. However, with a mean elevation of 2,040 meters, much of Wyoming has a limited crop growing season (as little as 60 days) and relies on late-summer and early-fall streamflow for agricultural water supply. Wyoming is host to over 80 glaciers with the majority of these glaciers being located in the Wind River Range. These "frozen reservoirs" provide a stable source of streamflow (glacier meltwater) during this critical late-summer and early-fall growing season. Given the potential impacts of climate change (increased temperatures resulting in glacier recession), the quantification of glacier meltwater during the late-summer and early-fall growing seasons is needed. Glacier area changes in the Wind River Range were estimated for 42 glaciers using Landsat data from 1985 to 2005. The total surface area of the 42 glaciers was calculated to be 41.2 +/- 11.7 km(2) in 1985 and 30.8 +/- 8.2 km(2) in 2005, an average decrease of 25% over the 21 year period. Small glaciers experienced noticeably more area reduction than large glaciers. Of the 42 glaciers analyzed, 17 had an area of greater than 0.5 km(2) in 1985, while 25 were less than 0.5 km(2) in 1985. The glaciers with a surface area less than 0.5 km(2) experienced an average surface area loss (fraction of 1985 surface area) of 43%, while the larger glaciers (greater than 0.5 km(2)) experienced an average surface area loss of 22%. Applying area-volume scaling relationships for glaciers, volume loss was estimated to be 409 x 106 m(3) over the 21 year period, which results in an estimated 4% to 10% contribution to warm season (July-October) streamflow.Item Recent Alpine Glacier Variability: Wind River Range, Wyoming, USA(2014-08-24) Maloof, Abigail; Piburn, Jesse; Tootle, Glenn; Kerr, Greg; University of Alabama TuscaloosaGlacier area and volume changes were quantified through the use of historical aerial photographs in the Wind River Range, Wyoming. Forty-four glaciers in the Wind River Range were analyzed using orthorectified aerial photography from 2012. This is an update to the work of Thompson et al. [1] in which the surface area changes of the 44 glaciers were estimated from 1966 to 2006. The total surface area of the glaciers was estimated to be 27.8 ± 0.8 km2, a decrease of 39% from 1966 and a decrease of 2% from 2006. The 2012 volume changes for the 44 glaciers were estimated using the Bahr et al. [2] volume-area scaling technique. The total glacier volume in 2012 was calculated to be 1.01 ± 0.21 km3, a decrease of 63% from 1966. These results, once compared to temperature and snowpack trends, suggest that the downward trend in snowpack as well as increasing temperatures seem to be the most likely driver of the glacier recessions. With Global Circulation Models (GCMs) forecasting higher temperatures and lower precipitation in the western U.S., it is likely that glaciers will continue to recede.