Browsing by Author "Jobarteh, Modou L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Development and Validation of an Objective, Passive Dietary Assessment Method for Estimating Food and Nutrient Intake in Households in Low- and Middle-Income Countries: A Study Protocol(Oxford University Press, 2020) Jobarteh, Modou L.; McCrory, Megan A.; Lo, Benny; Sun, Mingui; Sazonov, Edward; Anderson, Alex K.; Jia, Wenyan; Maitland, Kathryn; Qiu, Jianing; Steiner-Asiedu, Matilda; Higgins, Janine A.; Baranowski, Tom; Olupot-Olupot, Peter; Frost, Gary; Imperial College London; Boston University; University of Pittsburgh; University of Alabama Tuscaloosa; University of Georgia; University of Ghana; University of Colorado Anschutz Medical Campus; Baylor College of Medicine; United States Department of Agriculture (USDA)Malnutrition is a major concern in low- and middle-income countries (LMIC), but the full extent of nutritional deficiencies remains unknown largely due to lack of accurate assessment methods. This study seeks to develop and validate an objective, passive method of estimating food and nutrient intake in households in Ghana and Uganda. Household members (including under-5s and adolescents) are assigned a wearable camera device to capture images of their food intake during waking hours. Using custom software, images captured are then used to estimate an individual's food and nutrient (i.e., protein, fat, carbohydrate, energy, and micronutrients) intake. Passive food image capture and assessment provides an objective measure of food and nutrient intake in real time, minimizing some of the limitations associated with self-reported dietary intake methods. Its use in LMIC could potentially increase the understanding of a population's nutritional status, and the contribution of household food intake to the malnutrition burden. This project is registered at clinicaltrials.gov (NCT03723460).Item Food/Non-Food Classification of Real-Life Egocentric Images in Low- and Middle-Income Countries Based on Image Tagging Features(Frontiers, 2021) Chen, Guangzong; Jia, Wenyan; Zhao, Yifan; Mao, Zhi-Hong; Lo, Benny; Anderson, Alex K.; Frost, Gary; Jobarteh, Modou L.; McCrory, Megan A.; Sazonov, Edward; Steiner-Asiedu, Matilda; Ansong, Richard S.; Baranowski, Thomas; Burke, Lora; Sun, Mingui; University of Pittsburgh; Imperial College London; University of Georgia; Boston University; University of Alabama Tuscaloosa; University of Ghana; United States Department of Agriculture (USDA); Baylor College of MedicineMalnutrition, including both undernutrition and obesity, is a significant problemin low- and middle-income countries (LMICs). In order to study malnutrition and develop effective intervention strategies, it is crucial to evaluate nutritional status in LMICs at the individual, household, and community levels. In a multinational research project supported by the Bill & Melinda Gates Foundation, we have been using a wearable technology to conduct objective dietary assessment in sub-Saharan Africa. Our assessment includes multiple diet-related activities in urban and rural families, including food sources (e.g., shopping, harvesting, and gathering), preservation/storage, preparation, cooking, and consumption (e.g., portion size and nutrition analysis). Our wearable device ("eButton" worn on the chest) acquires real-life images automatically during wake hours at preset time intervals. The recorded images, in amounts of tens of thousands per day, are post-processed to obtain the information of interest. Although we expect future Artificial Intelligence (AI) technology to extract the information automatically, at present we utilize AI to separate the acquired images into two binary classes: images with (Class 1) and without (Class 0) edible items. As a result, researchers need only to study Class-1 images, reducing their workload significantly. In this paper, we present a composite machine learning method to perform this classification, meeting the specific challenges of high complexity and diversity in the real-world LMIC data. Our method consists of a deep neural network (DNN) and a shallow learning network (SLN) connected by a novel probabilistic network interface layer. After presenting the details of our method, an image dataset acquired from Ghana is utilized to train and evaluate the machine learning system. Our comparative experiment indicates that the new composite method performs better than the conventional deep learning method assessed by integrated measures of sensitivity, specificity, and burden index, as indicated by the Receiver Operating Characteristic (ROC) curve.