Browsing by Author "Gray, Stephen T."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Identification of Pacific Ocean sea surface temperature influences of Upper Colorado River Basin snowpack(American Geophysical Union, 2010-07-27) Aziz, Oubeidillah A.; Tootle, Glenn A.; Gray, Stephen T.; Piechota, Thomas C.; University of Tennessee System; University of Tennessee Knoxville; University of Wyoming; Nevada System of Higher Education (NSHE); University of Nevada Las Vegas; University of Alabama TuscaloosaGiven the importance of Upper Colorado River Basin (UCRB) snowpack as the primary driver of streamflow (water supply) for the southwestern United States, the identification of Pacific Ocean climatic drivers (e. g., sea surface temperature (SST) variability) may prove valuable in long-lead-time forecasting of snowpack in this critical region. Previous research efforts have identified El Nino-Southern Oscillation (ENSO) and Pacific Decadel Oscillation (PDO) as the main drivers for western U. S. snowpack, but these drivers have limited influence on regional (Utah and Colorado) UCRB snowpack. The current research applies for the first time the Singular Value Decomposition (SVD) statistical method to Pacific Ocean SSTs and continental U. S. snowpack to identify the primary Pacific Ocean climatic driver of UCRB snowpack. The use of SSTs eliminates any "bias" as to specific climate signals. The second mode of SVD identified a UCRB snowpack region (Colorado and Utah) and a corresponding Pacific Ocean SST region. A "non-ENSO/non-PDO" Pacific Ocean SST region between 34 degrees N-24 degrees S and 150 degrees E-160 degrees W was identified as being the primary driver of UCRB snowpack. To confirm the UCRB snowpack results, data from 13 unimpaired (or naturalized) streamflow gages in Colorado and Utah were used to evaluate and support the snowpack findings. Finally, a new and beneficial data set (western U.S. 1 March, 1 April, and 1 May snow water equivalent) was developed, which may be used in future research efforts.