Browsing by Author "Dhungana, Rajesh"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Cave air C O_2 and drip-water geochemical variability at Desoto Caverns: implications for speleothem-based paleoclimate studies(University of Alabama Libraries, 2017) Dhungana, Rajesh; Aharon, Paul; University of Alabama TuscaloosaThis study has addresses the question whether speleothems from DeSoto Caverns (Childersburg, AL) can be used as paleoclimate archives for the Southeast USA. The monitoring program encompassed determination of cave air CO2, cave ambient conditions (i.e., air temperature, humidity), drip-water geochemistry and local rainfall amount, and stable isotopes of oxygen and hydrogen (Tuscaloosa, AL). The substantial attenuation of drip water isotope ranges (-3.1 to – 5.3 ‰ V-SMOW) relative to rainwater (-1.2 to -6.4 ‰ V- SMOW) is likely caused by mixing of freshwater with residual evaporated water in the epikarst zone. The cave drip water δ18O shows an interannual negative trend from the warm/dry year (2012) to the relatively cool/wet year (2013) suggesting that evapotranspiration above the cave plays an important role in drip water δ18O variability. Drip water Ca, Mg and Sr and Mg/Ca and Sr/Ca ratios exhibit lower values and higher ratios, respectively, during the warm/dry relative to the cool/wet year. The interannual rainfall amount variability likely exerts a dominant control on the elemental concentrations and elemental ratios of the drips. Cave air pCO2 varies seasonally with high values (up to 5.0 atm ×103) during summer when cave air flow is in stagnation mode and low values (down to 0.48 atm ×103) during winter when cave air flow is in ventilation mode. The data suggest that seasonal variations in the concentration of cave air CO2 affect the δ13C of drip water and by extension that of speleothem δ13C values. The documented abrupt hydroclimate changes at ~5 ka in a DeSoto stalagmite is synchronous with the reduction of the North Atlantic Deep Water (NADW) production suggesting the latter being the likely controlling factor. The periodic (68 ± 4 yrs periodicity) switches of seasonal rainfall amount dominance from winter to summer and back are a prominent feature of the mid-to-late Holocene δ18O time series of the speleothem. The observed 68 ± 4 yrs periodicity in stalagmite 18O agrees well with the ~ 70 yrs periodicity of the Atlantic Multidecadal Oscillation (AMO) suggesting the latter played a dominant role in the hydroclimate changes in the southeastern US during the late Holocene.Item A high-resolution hydroclimate record of the last three millennia from a cored stalagmite at Desoto Caverns (Alabama, USA)(University of Alabama Libraries, 2010) Dhungana, Rajesh; Aharon, Paul; University of Alabama TuscaloosaLate Holocene climate changes in the Southeast USA are poorly documented due to the paucity of high-resolution paleo-records. This study provides high-resolution records of rapid hydroclimate changes in the Southeast over the last three millennia. The records are based on stable isotope rainfall proxies whose time series are constrained by precise U/Th dates from a stalagmite sampled at DeSoto Caverns. The average growth rate of the stalagmite was 149 µm/yr prior to 1400 years and it has been growing with an average growth rate of 42 µm/yr in the last 1400 years. During the past three thousand years stable isotope time series document six wet episodes (at ~ 2950, 2450, 1675, 1200, 700 and 70 years ago) alternating with six drier periods (at ~ 3100, 2800, 1900, 1500, 800 and 300 years ago). The biannually resolved 18O record agrees well with the contemporaneous SST record from the Sargasso Sea cores suggesting that changes in moisture availability in the Southeast are likely linked to subtropical North Atlantic SST variability. Power spectra analysis of the stalagmite-based oxygen isotope record reveals statistically significant periodicities at 24±1 and 36±1 year that are consistent with those observed in the contemporaneous atmospheric 14C production record. The 24 years periodicity is also consistent with the 24-year NAO Index periodicity. On the basis of our analysis we propose that the hydroclimate in the Southeast USA over the last three millennia was intimately linked to NAO variability powered by solar activity fluctuations.