The University of Alabama
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • About the repository
  • Open Access
  • Research Data Services
  • University Libraries
  • Login
University Libraries
    Communities & Collections
    Explore
  1. Home
  2. Browse by Author

Browsing by Author "Calatayud, Caries"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The Small GTPase RAC1/CED-10 Is Essential in Maintaining Dopaminergic Neuron Function and Survival Against alpha-Synuclein-Induced Toxicity
    (Springer, 2018) Kim, Hanna; Calatayud, Caries; Guha, Sanjib; Fernandez-Carasa, Irene; Berkowitz, Laura; Carballo-Carbajal, Iria; Ezquerra, Mario; Fernandez-Santiago, Ruben; Kapahi, Pankaj; Raya, Angel; Miranda-Vizuete, Antonio; Miguel Lizcano, Jose; Vila, Miquel; Caldwell, Kim A.; Caldwell, Guy A.; Consiglio, Antonella; Dalfo, Esther; University of Alabama Tuscaloosa; Institut d'Investigacio Biomedica de Bellvitge (IDIBELL); Bellvitge University Hospital; University of Barcelona; Hospital Duran i Reynals; Centro de Medicina Regenerativa de Barcelona; Buck Institute for Research on Aging; Autonomous University of Barcelona; Hospital Universitari Vall d'Hebron; Vall d'Hebron Institut de Recerca (VHIR); Hospital Clinic de Barcelona; IDIBAPS; ICREA; Consejo Superior de Investigaciones Cientificas (CSIC); University of Sevilla; CSIC-JA-USE - Instituto de Biomedicina de Sevilla (IBIS); Virgen del Rocio University Hospital; Universitat de Vic - Universitat Central de Catalunya (UVic-UCC)
    Parkinson's disease is associated with intracellular alpha-synuclein accumulation and ventral midbrain dopaminergic neuronal death in the Substantia Nigra of brain patients. The Rho GTPase pathway, mainly linking surface receptors to the organization of the actin and microtubule cytoskeletons, has been suggested to participate to Parkinson's disease pathogenesis. Nevertheless, its exact contribution remains obscure. To unveil the participation of the Rho GTPase family to the molecular pathogenesis of Parkinson's disease, we first used C elegans to demonstrate the role of the small GTPase RACI (ced-10 in the worm) in maintaining dopaminergic function and survival in the presence of alpha-synuclein. In addition, ced-10 mutant worms determined an increase of alpha-synuclein inclusions in comparison to control worms as well as an increase in autophagic vesicles. We then used a human neuroblastoma cells (M17) stably over-expressing alpha-synuclein and found that RAC1 function decreased the amount of amyloidogenic alpha-synuclein. Further, by using dopaminergic neurons derived firm patients of familial LRRIC2-Parkinson's disease we report that human RAC1 activity is essential in the regulation of dopaminergic cell death, alpha-synuclein accumulation, participates in neurite arborization and modulates autophagy. Thus, we determined for the first time that RAC1/ced-10 participates in Parkinson's disease associated pathogenesis and established RAC1/ced-10 as a new candidate for further investigation of Parkinson's disease associated mechanisms, mainly focused on dopaminergic function and survival against alpha-synuclein-induced toxicity.

Fulfill funder &
journal policies

Increase your
reach and impact

Preserve your works

University Libraries
Tel: +1205-348-8647ir@ua.edu
PrivacyDisclaimerAccessibilityCopyright © 2024