Browsing by Author "Buta, Ronald James"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Coupling semi-analytic models and N-body simulations: a new way of making galaxies and stellar halos(University of Alabama Libraries, 2017) McCord, Krista; Bailin, Jeremy; University of Alabama TuscaloosaStellar halos give insight into the initial conditions that existed when a host galaxy first formed and provide details on disrupted satellites via their different stellar populations. An algorithm that is computationally inexpensive compared to hydrodynamic simulations is necessary in order to theoretically study the structure and formation of galactic stellar halos in sufficient detail to probe substructure. CoSANG (Coupling Semi-Analytic/N-body Galaxies) is a new computational method that we are developing which couples pure dark matter N-body simulations with a semi-analytic galaxy formation model. At each timestep, results from the N-body simulation feed into the semi-analytic code, whose results feed back into the N-body code making the evolution of the dark matter and baryonic matter dependent on one another. CoSANG will enable a variety of galaxy formation science, including analysis of stellar populations, halo merging, satellite accretion, supermassive black holes, and indirect and direct dark matter detection. In this dissertation, I will describe the new simulation code CoSANG. The results from the extensive testing phase on CoSANG will be presented which indicate CoSANG is properly simulating feedback from galaxies within a dark matter halo. I used this validated code to analyze a CoSANG zoom simulation of a $10^{12} \mathrm{M_{\odot}}$ dark matter halo. Results showed a flatter inner halo near the disk and a more spherical outer halo which is expected when a galaxy exists at the center of a dark matter halo. A comparison is made with a simulation run with the same initial conditions, but with the baryonic component simulated using a hydrodynamic algorithm. The semi-analytic model predicted galaxy types better than the hydrodynamic simulation leading to the conclusion that the CoSANG halo is more accurate. I also present a dark matter direct detection analysis on the CoSANG zoom halo to measure the dark matter velocity distributions and modulation amplitudes. The CoSANG results show that the dark matter velocity distribution does not fit well to a Maxwell Boltzmann distribution and the modulation amplitudes derived indicate an anisotropic dark matter velocity distribution. Future work will include tagging dark matter particles with stellar properties to build and evolve a stellar halo.Item Mass dependent galaxy transformation mechanisms in the complex environment of SuperGroup Abell 1882(University of Alabama Libraries, 2013) Sengupta, Aparajita; Buta, Ronald James; University of Alabama TuscaloosaWe present our data and results from panchromatic photometry and optical spectrometry of the nearest (extremely rich) filamentary large scale structure, SuperGroup Abell 1882. It is a precursor of a cluster and is an inevitable part of the narrative in the study of galaxy transformations. There has been strong empirical evidence over the past three decades that galaxy environment affects galaxy properties. Blue disky galaxies transform into red bulge-like galaxies as they traverse into the deeper recesses of a cluster. However, we have little insight into the story of galaxy evolution in the early stages of cluster formation. Besides, in relaxed clusters that have been studied extensively, several evolutionary mechanisms take effect on similar spatial and temporal scales, making it almost impossible to disentangle different local and global mechanisms. A SuperGroup on the other hand, has a shallower dark-matter potential. Here, the accreting galaxies are subjected to evolutionary mechanisms over larger time and spatial scales. This separates processes that are otherwise superimposed in rich cluster-filament interfaces. As has been found from cluster studies, galaxy color and morphology tie very strongly with local galaxy density even in a complex and nascent structure like Abell 1882. Our major results indicate that there is a strong dependence of galaxy transformations on the galaxy masses themselves. Mass- dependent evolutionary mechanisms affect galaxies at different spatial scales. The galaxy color also varies with radial projected distance from the assumed center of the structure for a constant local galaxy density, indicating the underlying large scale structure as a second order evolutionary driver. We have looked for clues to the types of mechanisms that might cause the transformations at various mass regimes. We have found the thoroughly quenched low mass galaxies confined to the groups, whereas there are evidences of intermediate-mass quenched galaxies even in the far outskirts. However, unlike what we observe in this system, ideally would we expect the dwarf galaxies with their shallow potentials to be more vulnerable than more massive galaxies, and hence be quenched earlier. We propose harassment and/or ram-pressure stripping as the mechanism that might lead to the quenched galaxies near or inside the high density, high velocity dispersion region in and near the groups; and mergers as the mechanism for the intermediate mass quenched galaxies at the low density, low velocity dispersion outskirts. We also identify a starburst population preferentially occurring within the filaments, at least a subset of which must be progenitors of the quenched galaxies at the core of Abell 1882. This also indicates a higher degree of preprocessing within the filaments as compared to that of the field.Item Measuring ultraviolet extinction with GALEX in overlapping galaxies(University of Alabama Libraries, 2011) Manning, Anna; Keel, W. C.; University of Alabama TuscaloosaDust in spiral galaxies is an all encompassing factor in star formation history, measurements of luminosity, and galaxy dynamics. To learn more about galaxy formation and the influence of dust, White & Keel 1992 formulated a direct method to estimate optical depth. In the past few years, with the aid of the Galaxy Zoo forum and its members, known as zooites, a scientifically acceptable number of galaxy pairs have been identified to create a full catalog for this particular research. The White & Keel 1992 method uses differential photometry which eliminates many of the errors that plague statistical techniques that rely on the internal structure of a galaxy to estimate optical depth. The method relies heavily on the symmetry of the galaxies that make up the pair. To fulfill the symmetry requirement of the ideal geometry, the most suitable pair consists of a foreground spiral backlit by an elliptical galaxy. As evidenced here, non-interacting visually symmetric galaxies pairs yield the best results. Observations at the WIYN telescope combined with exposures downloaded from the GALEX archive are used to estimate the optical depth in these pairs as outlined by White & Keel 1992 and additionally, to trace the star formation in UV detections. Two examples of extended dust far beyond the optical radius were observed and analyzed for extinction. In this sample of galaxies, the optical depth of each wavelength scaled to the B filter was generally constant across the wavelengths observed. The effects of clumpy dust structure in the spiral arms dominated the reddening law which likely resulted in an overestimate of the optical depth measurements.Item A photometric study of pure disk galaxies(University of Alabama Libraries, 2014) Brockett, Timmy; Buta, Ronald James; University of Alabama TuscaloosaPure disk galaxies are galaxies that form and evolve without a central bulge region. This morphology of galaxy is relatively unexplained and has yet to be successfully simulated using Lambda-Cold Dark Matter (ΛCDM) model parameters. The ΛCDM model is the standard framework from which astronomers and physicists understand and predict the Universe due to confirmed predictions such as the cosmic microwave background and the large scale structure of galaxy clusters. However, ΛCDM has yet to have a benchmark, observationally confirmed prediction on the galactic scale. This thesis is a study of eleven pure disk galaxies. Understanding this type of galaxy is very important in rectifying the incompatibility with the ΛCDM model. The method of analysis includes obtaining, cleaning and sky subtracting images from the Sloan Digital Sky Survey Data Release 7, deprojecting the images for a face on perspective, using g- and i-bands to construct color-index maps, using Fourier decompositions to create mode-dependent intensity ratio plots, surface density maps, mass-to-light ratio maps and surface brightness profiles, from which the radial scale length is derived. The future of this area of study is vital to understand a common feature of our Universe. Future studies can include looking for early supernova remnants or evidence of recent active galactic nuclei activity in young pure disk galaxies. Surveys and photometric analysis of edge-on pure disk galaxies may also reveal vital information to the origin and evolution of this class of galaxy.