Browsing by Author "Belov, V."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A magnetically driven piston pump for ultra-clean applications(American Institute of Physics, 2011-10-25) LePort, F.; Neilson, R.; Barbeau, P. S.; Barry, K.; Bartoszek, L.; Counts, I.; Davis, J.; deVoe, R.; Dolinski, M. J.; Gratta, G.; Green, M.; Diez, M. Montero; Mueller, A. R.; O'Sullivan, K.; Rivas, A.; Twelker, K.; Aharmim, B.; Auger, M.; Belov, V.; Benitez-Medina, C.; Breidenbach, M.; Burenkov, A.; Cleveland, B.; Conley, R.; Cook, J.; Cook, S.; Craddock, W.; Daniels, T.; Dixit, M.; Dobi, A.; Donato, K.; Fairbank, W., Jr.; Farine, J.; Fierlinger, P.; Franco, D.; Giroux, G.; Gornea, R.; Graham, K.; Green, C.; Haegemann, C.; Hall, C.; Hall, K.; Hallman, D.; Hargrove, C.; Herrin, S.; Hughes, M.; Hodgson, J.; Juget, F.; Kaufman, L. J.; Karelin, A.; Ku, J.; Kuchenkov, A.; Kumar, K.; Leonard, D. S.; Lutter, G.; Mackay, D.; MacLellan, R.; Marino, M.; Mong, B.; Morgan, P.; Odian, A.; Piepke, A.; Pocar, A.; Prescott, C. Y.; Pushkin, K.; Rollin, E.; Rowson, P. C.; Schmoll, B.; Sinclair, D.; Skarpaas, K.; Slutsky, S.; Stekhanov, V.; Strickland, V.; Swift, M.; Vuilleumier, J. -L.; Vuilleumier, J. -M.; Wichoski, U.; Wodin, J.; Yang, L.; Yen, Y. -R.; Stanford University; Laurentian University; University of Bern; National Research Centre - Kurchatov Institute; Alikhanov Institute for Theoretical & Experimental Physics; Colorado State University; United States Department of Energy (DOE); SLAC National Accelerator Laboratory; Carleton University; University System of Maryland; University of Maryland College Park; Technical University of Munich; University of Alabama Tuscaloosa; Indiana University System; Indiana University Bloomington; University of Seoul; University of Massachusetts System; University of Massachusetts AmherstA magnetically driven piston pump for xenon gas recirculation is presented. The pump is designed to satisfy extreme purity and containment requirements, as is appropriate for the recirculation of isotopically enriched xenon through the purification system and large liquid xenon time projection chamber of EXO-200. The pump, using sprung polymer gaskets, is capable of pumping more than 16 standard liters per minute of xenon gas with 750 Torr differential pressure. (C) 2011 American Institute of Physics. [doi:10.1063/1.3653391]Item Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector(2018-02-15) Albert, J. B.; Anton, G.; Badhrees, I.; Barbeau, P. S.; Bayerlein, R.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Cao, G. F.; Cen, W. R.; Chambers, C.; Cleveland, B.; Coon, M.; Craycraft, A.; Cree, W.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Daughhetee, J.; Davis, J.; Delaquis, S.; Mesrobian-Kabakian, A. Der; DeVoe, R.; Didberidze, T.; Dilling, J.; Dolgolenko, A.; Dolinski, M. J.; Fairbank, W. Jr.; Farine, J.; Feyzbakhsh, S.; Fierlinger, P.; Fudenberg, D.; Gornea, R.; Graham, K.; Gratta, G.; Hall, C.; Hansen, E. V.; Hoessl, J.; Hufschmidt, P.; Hughes, M.; Jamil, A.; Jewell, M. J.; Johnson, A.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Koffas, T.; Kravitz, S.; Krücken, R.; Kuchenkov, A.; Kumar, K. S.; Lan, Y.; Leonard, D. S.; Li, G. S.; Li, S.; Licciardi, C.; Lin, Y. H.; MacLellan, R.; Michel, T.; Mong, B.; Moore, D.; Murray, K.; Nelson, R.; Njoya, O.; Odian, A.; Ostrovskiy, I.; Piepke, A.; Pocar, A.; Retière, F.; Rowson, P. C.; Russell, J. J.; Schmidt, S.; Schubert, A.; Sinclair, D.; Stekhanov, V.; Tarka, M.; Tolba, T.; Tsang, R.; Vogel, P.; Vuilleumier, J. -L.; Wagenpfeil, M.; Waite, A.; Walton, T.; Weber, M.; Wen, L. J.; Wichoski, U.; Wrede, G.; Yang, L.; Yen, Y. -R; Zeldovich, O. Ya.; Zettlemoyer, J.; Ziegler, T.; University of Alabama TuscaloosaResults from a search for neutrinoless double-beta decay (0νββ) of 136Xe are presented using the first year of data taken with the upgraded EXO-200 detector. Relative to previous searches by EXO-200, the energy resolution of the detector has been improved to σ/E=1.23%, the electric field in the drift region has been raised by 50%, and a system to suppress radon in the volume between the cryostat and lead shielding has been implemented. In addition, analysis techniques that improve topological discrimination between 0νββ and background events have been developed. Incorporating these hardware and analysis improvements, the median 90% confidence level 0νββ half-life sensitivity after combining with the full data set acquired before the upgrade has increased twofold to 3.7×1025 yr. No statistically significant evidence for 0νββ is observed, leading to a lower limit on the 0νββ half-life of 1.8×1025 yr at the 90% confidence level.Item Searches for double beta decay of Xe-134 with EXO-200(American Physical Society, 2017-11-03) Albert, J. B.; Anton, G.; Badhrees, I.; Barbeau, P. S.; Bayerlein, R.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Cao, G. F.; Cen, W. R.; Chambers, C.; Cleveland, B.; Coon, M.; Craycraft, A.; Cree, W.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Daughhetee, J.; Davis, J.; Delaquis, S.; Der Mesrobian-Kabakian, A.; DeVoe, R.; Didberidze, T.; Dilling, J.; Dolgolenko, A.; Dolinski, M. J.; Fairbank, W., Jr.; Farine, J.; Feyzbakhsh, S.; Fierlinger, P.; Fudenberg, D.; Gornea, R.; Graham, K.; Gratta, G.; Hall, C.; Hoessl, J.; Hufschmidt, P.; Hughes, M.; Jamil, A.; Jewell, M. J.; Johnson, A.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Koffas, T.; Kravitz, S.; Krucken, R.; Kuchenkov, A.; Kumar, K. S.; Lan, Y.; Leonard, D. S.; Li, S.; Licciardi, C.; Lin, Y. H.; MacLellan, R.; Marino, M. G.; Michel, T.; Mong, B.; Moore, D.; Murray, K.; Nelson, R.; Njoya, O.; Odian, A.; Ostrovskiy, I.; Piepke, A.; Pocar, A.; Retiere, F.; Rowson, P. C.; Russell, J. J.; Schubert, A.; Sinclair, D.; Smith, E.; Stekhanov, V.; Tarka, M.; Tolba, T.; Tsang, R.; Vogel, P.; Vuilleumier, J. -L.; Wagenpfeil, M.; Waite, A.; Walton, J.; Walton, T.; Weber, M.; Wen, L. J.; Wichoski, U.; Yang, L.; Yen, Y. -R.; Zeldovich, O. Ya.; Zettlemoyer, J.; Ziegler, T.; Indiana University System; Indiana University Bloomington; University of Erlangen Nuremberg; Carleton University; Duke University; University of North Carolina; University of North Carolina Chapel Hill; North Carolina State University; University of Illinois System; University of Illinois Urbana-Champaign; National Research Centre - Kurchatov Institute; Alikhanov Institute for Theoretical & Experimental Physics; Stanford University; United States Department of Energy (DOE); SLAC National Accelerator Laboratory; McGill University; University of British Columbia; Chinese Academy of Sciences; Institute of High Energy Physics, CAS; Colorado State University; Laurentian University; University of South Dakota; University of Alabama Tuscaloosa; Drexel University; University of Massachusetts System; University of Massachusetts Amherst; Technical University of Munich; University of Munich; University System of Maryland; University of Maryland College Park; State University of New York (SUNY) System; State University of New York (SUNY) Stony Brook; Institute for Basic Science - Korea (IBS); Yale University; California Institute of Technology; University of Bern; King Abdulaziz City for Science & Technology; Russian Academy of Sciences; Russian Academy of Science Lebedev Physical Institute; Argonne National Laboratory; Pacific Northwest National LaboratorySearches for double beta decay of Xe-134 were performed with EXO-200, a single-phase liquid xenon detector designed to search for neutrinoless double beta decay of Xe-136. Using an exposure of 29.6 kg center dot yr, the lower limits of T-1/2(2 nu beta beta) > 8.7 x 10(20) yr and T-1/2(0 nu beta beta) > 1.1 x 10(23) yr at 90% confidence level were derived, with corresponding half-life sensitivities of 1.2 x 10(21) yr and 1.9 x 10(23) yr. These limits exceed those in the literature for Xe-134, improving by factors of nearly 10(5) and 2 for the two antineutrino and neutrinoless modes, respectively.